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An Experimental Investigation
of the Influence of Gas and Solid
Particle Interaction on the Heat
Transfer Effectiveness
of a Falling-Bed Heat Exchanger
The objective of this investigation is to quantify and understand the performance of
falling-bed heat exchangers. Experimental steady-state heat transfer data, whose quality
is demonstrated with an accurate energy balance between the gas and particle streams,
are presented. Measured temperatures, pressures, and overall heat transfer rates are
compared to predicted values from a one-dimensional analytical model, and the capa-
bilities and deficiencies of the model are discussed. In addition, the effect of a particle
distributor on the performance of the falling-bed heat exchanger is measured. While the
model is shown to be unable to provide a quantitatively accurate prediction of the per-
formance of the heat exchanger, it does provide an estimate of the maximum possible
effectiveness of the heat exchanger. A simple particle distributor is shown to provide
relatively poor effectiveness, while the use of a more complex distributor causes the
effectiveness of the heat exchanger to approach the upper bound. The combination of
experimental data and model results offers useful insight for developing falling-bed heat
exchangers and provides a useful test case for future modeling
efforts. �DOI: 10.1115/1.2033904�

Keywords: Heat Exchanger, Falling-Bed, Solid Particles, Distributor, Effectiveness

1 Introduction

Heat exchangers incorporating fixed, moving, and fluidized
beds of solid particles are commonly used in industrial applica-
tions. These arrangements provide very large areas for heat ex-
change in a small volume, and make for very compact and effec-
tive heat exchangers. The ability to predict the heat transfer rate
between the gas and particles accurately is a critical factor in the
design process for chemical reactors and heat exchangers.

The subject of the current research is a method of heat ex-
change between gas and solids commonly called a falling bed. In
this arrangement, solid particles fall through a vertical column
against a counterflowing gas stream flowing with a superficial
velocity less than the terminal velocity of the particle. Heat is
exchanged between the falling particles and rising gas. This ar-
rangement has been proposed for heat recovery and regeneration
in power plants and other process applications.

The heat transfer between the gas and solid particles in falling-
bed heat exchangers, as well as between a continuous fluid and
dispersed droplets in liquid-liquid direct contact heat exchangers
and spray columns, has typically been modeled by assuming
steady-state and ideal, uniform, one-dimensional flow of the con-
tinuous fluid and the particle or droplets �Decher �1�, Gat �2�, Park
et al. �3�, Patnaik �4�, Thayer and Sekins �5�, Thynell and Man-
chor �6�, Thynell and Patnaik �7��. This analytical model, some-
times called the plug flow model, is referred to as the uniform
mixing model in this study.

In many previous experimental studies, the uniform mixing
model has been assumed to describe the interaction between the

continuous fluid and particles or droplets. This assumption is im-
plied by the use of the log-mean temperature difference �LMTD�,
which is derived assuming a constant heat exchange coefficient U
and isolated heat transfer between the two streams �Incropera and
DeWitt �8��. With the measurement of the LMTD and the heat
transfer rate q between the streams, the product of the apparent
coefficient U and the area available for heat exchange A is deter-
mined. The coefficient U is finally isolated by a measurement or
estimate of the surface area A, possibly by direct photographic
measurement as in Pierce et al. �9�. This coefficient U is assumed
to be equivalent to the heat transfer coefficient h for a spherical
particle, and is usually presented in the form of a Nusselt number
correlation as a function of measured or estimated particle relative
Reynolds number. These experimental data are then compared to
accepted Nusselt number correlations for single isolated spheres,
such as that presented by Ranz and Marshall �10�. In most of these
comparisons, the agreement between the experimental data and
the single particle correlation is poor, with the measured values
typically lower than the correlation at the same apparent Reynolds
number. In some of the studies, it is acknowledged that the heat
transfer between the streams was not isolated from the surround-
ings owing to steady-state or transient heat exchange with the
walls of the test apparatus �Islam �11�, Pierce et al. �9��. However,
in several instances where the interaction between the dispersed
and continuous phases was visible, it was observed that significant
maldistributions in the flow of both phases were observed. These
maldistributions were posited as the explanation for the poor
agreement between the data and the isolated particle correlations
�Inaba et al. �12�, Pierce et al. �9��. These observed maldistribu-
tions, by themselves, indicate the use of the uniform mixing
model is suspect. In Inaba et al. �12�, direct measurements of the

Contributed by the Heat Transfer Division of ASME for publication in the JOUR-

NAL OF HEAT TRANSFER. Manuscript received November 3, 2004; final manuscript
received May 13, 2005. Review conducted by John H. Lienhard V.

Journal of Heat Transfer OCTOBER 2005, Vol. 127 / 1077Copyright © 2005 by ASME

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



dispersed and continuous phase velocity profiles suggested that
the isolated particle correlations were appropriate if the entrain-
ment of the continuous phase by the drag of the dispersed phase
were accounted for.

The objective of this investigation is to quantify the perfor-
mance of a falling-bed heat exchanger. Experimental data are pre-
sented for a test falling-bed heat exchanger. Measured tempera-
tures, pressures, and overall heat transfer rates are reported and
compared to predicted values from the analytical uniform mixing
model. Both the capabilities and deficiencies of this model are

discussed. In addition, the effect of a particle distributor on the
performance of the falling-bed heat exchanger is measured.

2 Experimental Work

2.1 Apparatus. Experiments were performed using the ALS-
TOM Power Plant Laboratory Enhanced Heat Transfer �EHT� fa-
cility �Fig. 1�. This facility was comprised of a test falling-bed
heat exchanger utilizing a steel column constructed with six 1.5 m
�5 ft.� sections of 0.45 mm �26 gauge� thick galvanized steel

Fig. 1 ALSTOM power plant laboratory enhanced heat transfer „EHT… facility
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stovepipe. When assembled, the column had a net height of 8.9 m
�29.2 ft.�. The inner diameter of this column was 35.6 cm �14 in.�.
A number of brass couplings were soldered onto the column to
provide access for temperature and pressure instrumentation. The
column was wrapped in two layers of 5.1 cm �2 in.� fiberglass
blanket.

A 42 kW �75 hp� Lamson centrifugal blower provided the air-
flow. The air entering the column was heated primarily by the
mechanical work of the blower. This heating was augmented with
an electric fan and heater that warmed the air before it entered the
blower. The air then passed through a duct into the lower plenum,
then through a perforated plate that spanned the 10.2 cm �4 in.�
gap between the bottom of the column and the particle receiver.
The air flowed vertically through the column and exited into an-
other plenum, from which the air was directed into baghouses to
capture any entrained particles. The mass flow rate of the air was
measured with an orifice flow meter located between the electric
heater and the blower.

Particles were introduced from a hopper at the top of the col-
umn through a gate valve that controlled the mass flow rate of the
particles. The particles fell from the pipe or distributor through the
upward-flowing gas in the column and into a particle receiver
located within the bottom plenum. The receiver directed the par-
ticles into a storage hopper below the lower plenum. The hoppers
could accommodate approximately 900 kg �2000 lbs.� of solid
particles, and the particle flow rate could be varied from zero to
1.5 kg/s �12,000 lb./h�. Higher particle flow rates were possible,
but at higher particle flow rates the test duration was so short that
the column could not reach thermal equilibrium before the upper
hopper emptied.

2.2 Particle Distributors. Two different arrangements were
used to introduce particles into the column. In the first series of
tests the particles were directed through the upper plenum through
a 5.1 cm �2 in.� inner diameter Schedule 40 steel pipe that ex-
tended to a point just below the top of the column. In another
series of tests, this steel pipe was replaced with an identical length
of 5.1 cm �2 in.� inner diameter chlorinated polyvinyl chloride
�CPVC� pipe. A particle distributor �Fig. 2�, formed by a CPVC
reducer and a basket formed by four crossed bands of 1.2 cm
�0.5 in.� wide sheet metal, was attached to the end of this pipe in
order to spread the particles into eight separate streams. This bas-
ket distributor was designed with the intention of improving the
mixing and overall heat transfer rate between the gas and the
particles.

2.3 Particle Properties. The solid material used in these tests
was bauxite, a sintered ceramic material consisting mostly of alu-
mina and silica compounds �Fig. 3�. The volume mean diameter,
determined by sieve analysis, was 700 �m. The density of the
bauxite �s, determined by helium displacement, was measured to
be 3600 kg/m3. The specific heat of bauxite cs was determined by
a composition analysis and calculation of the weighted average
specific heats of the compounds that constitute bauxite using the
method of mixtures. A simple polynomial expression �Eq. �1��
was determined from this analysis in order to integrate the heat
pickup by the solids accurately over the possible range of particle
temperatures Ts �300–400 K�

cs�Ts� = − 115.41 + 3.9413Ts − 0.0034Ts
2 �J/kg K� �1�

The thermal conductivity of the major constituent of bauxite,
alumina, is approximately 36 W/m K. The Biot number for these
particles, assuming the particle is falling at its terminal Reynolds
number, was much less than 0.1, indicating that the particles were
essentially isothermal.

2.4 Instrumentation. Temperatures of the gas and particles
were measured at various positions in the test apparatus. Type K
thermocouples with a resolution of ±1.0 K were used. The maxi-

mum air temperature entering the lower plenum was approxi-
mately 350 K �630 R�, and the entering particles were at ambient
room temperature, approximately 300 K �540 R�.

The particle inlet temperature Ts,i was measured with a 3.2 mm
�1/8 in.� diameter thermocouple inserted through the wall of the
upper hopper just above the gate valve. The temperature of the
particles exiting the bottom of the column Ts,o was the average of
the measurements recorded from two 1.6 mm �1/16 in.� diameter
thermocouples, each soldered into a half section of a 1.3 cm
�0.5 in.� diameter copper pipe. The open side of this pipe received
the falling particles, which immersed the thermocouple. These
particles flowed along the pipe section and fell into the particle
receiver. The particles in the pipe were constantly replaced by

Fig. 2 Image of particle flow from the basket distributor. Grid
squares are 2.54 cm „1 in.… wide.

Fig. 3 Photograph of 700 �m bauxite. Scale gradation is in
increments of 60 �m.
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fresh falling particles.
A number of thermocouples were installed to measure the air

temperature along the centerline of the column. During tests with
the distributor installed, the thermocouples were shielded from the
falling particles by a 9.5 mm �3/8 in.� diameter steel tube, cut in
half lengthwise with the open side facing downward. The thermo-
couple was prevented from contacting the steel tube by small
beads of room temperature vulcanizing �RTV� silicone compound.
In tests where the distributor was removed, it was thought that
these relatively large thermocouple arrangements would have in-
terfered with the dense stream of particles passing down the center
of the column. For this reason, these thermocouples were removed
and were replaced with thin 0.8 mm �1/32 in.� diameter thermo-
couples passed through a 2.4 mm �3/32 in.� diameter steel tube to
shield it from the falling particles. The tip of the thermocouple
was bent downward under the steel tube to minimize particle con-
tact with the falling particles. In addition to these centerline mea-
surements, an unshielded 3.2 mm �1/8 in.� diameter thermo-
couple was installed at the 8.80 m �28.9 ft.� elevation with the tip
inserted 8.9 cm �3.5 in.� in from the inner wall of the column.
This thermocouple could not be inserted to the centerline of the
column, as it would have interfered with the particle inlet
distributor.

A separate series of six Type K thermocouples was also used.
Five of these thermocouples, with diameters of 0.8 mm
�1/32 in.�, were used to construct a rake that could measure the
radial gas temperature variation at a certain elevation in the col-
umn. These thermocouples were shielded from falling particles by
a 6.4 mm �1/4 in.� diameter wooden dowel. The sixth thermo-
couple measured the air temperature upstream of the orifice flow
meter.

Differential pressure measurements were made with a Pressure
Systems Inc. ESP-16BP pressure scanner, incorporating piezo-
electric pressure transducers with a static uncertainty of ±0.25 Pa.
Differential pressure measurements were made for four separate
sections of the column, and one overall measurement was made
over the full height of the column. This scanner was also used to
measure the pressure differential across the orifice flow meter and
the static pressure relative to the atmospheric upstream of the
orifice. The atmospheric pressure was measured with a Rose-
mount pressure transducer.

The mass flow rate of the particles was determined by measure-
ments of the mass of the hopper, using two load cells. The rate of
change of this measured mass over time determined the particle
flow rate. The uncertainty in the particle mass flow rate was less
than ±0.01 kg/s.

The thermocouples, load cells, and ambient atmospheric pres-
sure measurements were scanned with a Fluke 2400B data scan-
ner. The data were recorded over time with Labview software on
a laptop computer. The output of the pressure scanner and the data
acquisition board associated with the thermocouple rake and the
orifice temperature were recorded with Labview on a separate
computer.

2.5 Experimental Procedure. At the start of the test, the pi-
ezoelectric pressure transducers were zeroed against a common
pressure reference. Data logging was started on both computers.
The air heater and Lamson blower were then turned on and the
throttle adjusted to maintain the desired air flow rate. Up to 2 h of
blower operation were required for the gas temperatures to reach a
steady value, due primarily to the need to heat the thick steel
casing of the Lamson compressor stages and the steel walls of the
lower plenum.

Once the temperatures stabilized, compressed air was passed
through the cyclone inlet at the top of the upper hopper and ex-
hausted from the outlet side of the venturi. The resistance of the
venturi to the gas flow pressurized the upper hopper. The com-
pressed air flow was adjusted until a manometer indicated zero

static pressure differential between the upper hopper and the top
of the column. This was done to prevent the backflow of hot gas
within the column up through the distributor into the upper
hopper.

Once the static pressure was equalized, the gate valve was
opened and particles were introduced into the column. The test
duration was determined by the mass flow rate of particles and by
the amount of particles in the upper hopper. At the end of the
particle flow, the air heater and blower were shut off and the data
were written to files for later reduction. The particles were gener-
ally allowed to cool overnight before being pneumatically trans-
ported to the upper hopper for the next test.

2.6 Data Analysis. The temperatures that were recorded from
all of the thermocouples after the apparatus reached thermal equi-
librium were averaged both before the start of particle flow and
during the particle flow.

All of the averaged axial and radial temperatures in the column
before the introduction of particles were generally the same within
the experimental resolution of the thermocouples, indicating that
the heat exchanger was at steady state, not exchanging a measur-
able amount of heat with the ambient, and that the gas entering the
bottom of the column was well mixed.

The centerline column temperature at the 0.30 m �12 in.� eleva-
tion in the column, recorded before the start of the particle flow,
was considered to be the inlet temperature of the hot gas Tg,i for
heat transfer calculations. When the particle flow started and the
temperatures stabilized again, the average temperature recorded
by the thermocouple at the 8.80 m �28.9 ft.� elevation was con-
sidered to be the outlet temperature of the gas Tg,o. These values
were used to calculate the rate of heat transfer from the gas qgas.

The measurements of the particle inlet and outlet temperatures,
averaged over the same period of time, were used to calculate the
rate of heat transfer to the particles qparticles. The rate of heat
transfer from the gas qgas and heat transfer rate to the particles
qparticles were calculated by the following equations:

qgas = ṁgcg�Tg,i − Tg,o� for air �2a�

qparticles =�
Ts,i

Ts,o

ṁscs�Ts�dTs for particles �2b�

Note that the specific heat of the air was approximately constant
�1006 J /kg K� over the range of temperatures encountered in this
experiment. However, the specific heat of the bauxite varies by
more than 12% over the same temperature range. Failure to ac-
count for this change by integrating the specific heat curve over
the temperature range would have caused a significant error in the
measured rate of energy absorption by the particles qparticles.

The recorded differential pressures from the column were each
averaged both before and during particle flow. These differential
pressures had to be corrected for the hydrostatic weight of air in
the lines leading from the column to the pressure scanner. The
density of the air in the lines was calculated by using the ideal gas
law with the measured atmospheric pressure and ambient labora-
tory temperature. The actual pressure difference between two ver-
tical points on the column �Pcolumn separated by a height z was
related to the recorded differential pressure �Precorded by

�Pcolumn = �Precorded + �ggz �3�

3 Analytical Model
The uniform mixing model has been used by many researchers

in order to estimate the heat transfer area A available in a given
bed configuration. In this model, the heat exchanger coefficient U
is approximated by the heat transfer coefficient h for a sphere
falling at terminal velocity. The heat exchanger surface area A is
equal to the total surface area of the spherical particles suspended
by drag within the column.
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The amount of particles supported by the gas is estimated with
knowledge of the gas superficial velocity uo, particle terminal ve-
locity vT, and mass flow rate ṁS of particles. The terminal velocity
is calculated by equating the weight of the particle to the drag
force on the particle falling at terminal velocity, using the drag
correlation of Morsi and Alexander �13�

CD = a1 +
a2

Red
+

a3

Red
2 �4�

The constants for this correlation are expressed for discrete
ranges of Reynolds numbers as follows:

0�Red�0.1 a1=0.0 a2=18.0 a3=0.0
0.1�Red�1.0 a1=1.222 a2=29.1667 a3=−3.8889
1.0�Red�10.0 a1=3.690 a2=22.73 a3=0.0903
10.0�Red�100.0 a1=0.6167 a2=46.5 a3=−116.67
100.0�Red�1000.0 a1=0.3644 a2=98.33 a3=−2778.0
1000.0�Red�5000.0 a1=0.357 a2=148.62 a3=−47500
5000.0�Red�10000.0 a1=0.46 a2=−490.55 a3=578700
10000.0�Red a1=0.5191 a2=−1662.5 a3=5416700

From the definition of the mass flow rate of particles

ṁS = ��SAC�vT − uo� �5�

where � is the average volume fraction of the particles, �S is the
density of the solid material, and AC is the cross-sectional area of
the column. From this expression, we can solve for the particle
volume fraction

� =
ṁS

�SAC�vT − uo�
�6�

The temperatures in the experiment ranged from 300 K �labo-
ratory ambient, the inlet temperature of the solid particles� to
360 K �inlet gas temperature�. Calculation of the particle terminal
velocities at these extremes, using the ideal gas law for density
and the Sutherland law for viscosity, yields a difference of 3% in
terminal velocity. The corresponding change in average solid frac-
tion calculated in the model is similarly small. In the calculation,
the average of the gas and particle inlet temperatures was used for
the evaluation of air properties.

The effect of interparticle spacing on drag was investigated in
detail and found to be negligible. In the tests conducted with the
simple injector, at the highest flow rates, the maximum solid frac-
tion at the point of introduction was around 0.02 �2%�. Using the
solid fraction drag correction of Wen and Yu �14�, the change in
drag coefficient was less than 10%, with a corresponding change
in terminal velocity of around 5%. The local solids fraction de-
creases as the particle stream spreads. On average, the solids frac-
tion near the bottom of the column at the highest solids loading
would not exceed 0.001 �0.1%�.

Average values of the Reynolds number and solid fraction were
calculated for use with the uniform mixing model. For the bauxite
particles used in this study, the terminal Reynolds number, calcu-
lated using the Morsi and Alexander drag correlation, was ap-
proximately 230, with a corresponding terminal velocity of
6.6 m/s. The average solids volume fraction, calculated using Eq.
�6�, varied from 0.0001 to 0.001.

The holdup area A can then be estimated by multiplying the
volume fraction of particles by the volume of the column �AcL,
where L is the height of the column�, and then multiplying by the
surface area to volume ratio of a spherical particle �6/d�

A =
ṁS

�SAc�vT − uo�
�AcL�

6

d
= 6

ṁS

�S�vT − uo�
L

d
�7�

The pressure gradient in the column can also be calculated us-
ing the mixture density in the hydrostatic equation

�p = ���s + �1 − ���g�g �8�

where g is the acceleration of gravity. The gas density �g is cal-
culated using the ideal gas law for air in conjunction with the
average gas temperature in the column.

The overall heat exchanger coefficient U is assumed to be equal
to the heat transfer coefficient h for the particle falling at its ter-
minal Reynolds number. The heat transfer coefficient is deter-
mined using the Nusselt number correlation of Ranz and Marshall
�10�

Nu = 2 + 0.6Red
1/2Pr1/3 �9�

The heat transfer effectiveness � can be estimated with the
�-NTU method. The �-NTU method is derived by assuming that
the heat exchanger is isolated from its surroundings, that the over-
all heat transfer coefficient U is constant, and that the specific
heats of both streams are constant. The expression for the theoret-
ical effectiveness � of a counterflow heat exchanger is given by
�Incropera and DeWitt �8��

� =
1 − exp�− NTU�1 − Cr��

1 − Cr exp�− NTU�1 − Cr��
Cr � 1

� =
NTU

1 + NTU
Cr = 1 �10�

The number of transfer units NTU is given by

NTU =
UA

Cmin
, �11�

where Cmin is the limiting heat capacity rate of the heat exchanger,
defined as:

Cmin = min�ṁgcg,ṁscs� �12�

where ṁi is the mass flow rate of the stream, and ci is the specific
heat capacity of the stream material. Cr is the ratio of the mini-
mum to the maximum heat capacity rates

Cr =
Cmin

Cmax
�13�

For a given application where the inlet temperatures of both
streams are prescribed, the maximum possible heat transfer rate
qmax may be determined by

qmax = Cmin�Tg,i − Ts,i� �14�

The heat transfer rate for the uniform mixing model qumm be-
tween the particles and the gas may then be estimated by the
definition of the heat exchanger effectiveness

qumm = �qmax �15�
The nonconstant specific heat of the bauxite will generally not

permit the use of the �-NTU method to calculate the heat transfer
rate. The temperature dependence of the specific heat of bauxite
introduces a nonlinearity into the heat exchange equations that
will not permit the derivation of a closed form expression for
effectiveness. An iterative numerical shooting method was used in
order to determine the temperature profiles and net heat exchange
rate between the gas and particles qumm.

4 Results
In order to evaluate the quality of the heat transfer and tempera-

ture data, the heat transfer rates from the gas and to the particles
were evaluated using Eqs. �2a� and �2b�, respectively, using the
measured inlet and outlet temperatures and mass flow rates of
both streams. These gas and particle heat transfer rates are plotted
against each other in Fig. 4. The solid line in this figure indicates
a slope of one where the gas and particle heat transfer rates are
equal. The proximity of the data to this line indicates that for the
majority of the tests a satisfactory energy balance was achieved.
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In one instance the solids flow rate was so high that thermal equi-
librium could not be achieved, and the resulting heat imbalance is
shown in Fig. 4. The heat transfer data from this particular test
was rejected, but the corresponding pressure measurements were
retained as the density of the air was not strongly affected by
changes in temperature in this experiment.

The measured gas and particle heat transfer rates calculated
using Eqs. �2a� and �2b� were averaged and plotted against the
analogous model predictions �Fig. 5�. As can be seen, the predic-
tions of the uniform mixing model generally overpredict the mea-
sured heat transfer rates. The apparent agreement between the data
and the model at the high and low extremes of heat transfer rate is
due to the fact that the falling-bed heat exchanger effectiveness
approaches unity at low values of the thermal capacitance ratio Cr.

The averaged axial gas temperature data for tests conducted
without a basket distributor are shown in Fig. 6. Data are pre-
sented for three representative tests at high, low, and midrange
solid flow rates. Gas flow rates were approximately constant from
test to test. These data are plotted against the gas temperature
profiles predicted by the uniform mixing model. While the model
appears to follow the crude trend of the axial temperature data at
higher solid flow rates �Figs. 6�a� and 6�b��, the predicted axial
gas temperature significantly overpredicts the centerline tempera-
ture at lower solids flow rates �Fig. 6�c��. At this flow rate, the

capacitance ratio is close to one, which from �-NTU theory cor-
responds to an operating condition of minimum effectiveness.
This reduced effectiveness causes the predicted gas temperature at
the top of the column to be measurably different from the inlet
solids temperature, therefore providing a more challenging com-
parison to corresponding experimental data.

The measured pressure gradients for the same tests conducted
without the basket distributor installed are shown in Fig. 7. These
data were corrected for pressure line effects as described in Eq.
�3�. These pressures were measured relative to the static pressure
measurement taken at the 0.30 m elevation in the column. Lines
indicating the pressure gradient predicted using the uniform mix-
ing model �Eq. �8�� and the estimated hydrostatic gradient of the
air only are also plotted in these figures. It can be seen at the top
of the column that the pressure gradient is close to the hydrostatic

Fig. 4 Heat transfer rate balance between gas and particles

Fig. 5 Comparison of measured gas and particle heat transfer
rates to predictions of uniform mixing model

Fig. 6 Axial temperature profiles for tests with simple particle
injection. Measured temperatures „symbols… plotted against
prediction of uniform mixing model „solid line…. The respective
particle and gas mass flow rates are „a… 1.05 and 0.45 kg/s, „b…
0.67 and 0.46 kg/s, and „c… 0.39 and 0.44 kg/s.
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gradient of the air, suggesting that very little drag interaction oc-
curs in this area. Closer to the bottom of the column, the pressure
gradient asymptotes to the pressure gradient predicted by the uni-
form mixing model. The location of this transition appears to be a
function of particle flow rate, with the transition occurring farther
down the column as the particle flow rate increases.

The measured radial gas temperature profile for the same tests
is shown in Fig. 8, taken at the 5.2 m elevation in the column.
Note that significant radial temperature gradients are observed in
these tests. This profile shows that the gas in the center of the
column is cooler than the gas near the column walls, suggesting
that the structure of the falling stream of particles was intact at
this column elevation. The presence of a structured stream of par-

ticles was confirmed by qualitative measurements of the radial
particle concentration using two copper pipe sections, cut in half
and filled with silicone adhesive, to collect falling particles. These
measurements were performed at two elevations �5.2 and 7.6 m�
in the column. The measurements at the 7.6 m elevation did
clearly show the structure of the stream of solids falling from the
simple injector. This structure was not observed in the profile
taken at the 5.2 m elevation in the column. The existence of these
temperature and particle concentration gradients contradicts the
assumptions used to develop the uniform mixing model, and
therefore the uniform mixing model is not accurate for this situa-
tion.

Fig. 7 Axial pressure profiles for tests with simple particle in-
jection. Measured pressures plotted against prediction of uni-
form mixing model „black line… and hydrostatic gradient of air
only „gray line…. Open symbols are the sum of the measured
pressure differences up to that elevation. The gray symbol is
the pressure difference over the entire column. The respective
particle and gas mass flow rates are „a… 1.05 and 0.45 kg/s, „b…
0.67 and 0.46 kg/s, and „c… 0.39 and 0.44 kg/s.

Fig. 8 Radial temperature profiles for tests with simple par-
ticle injection. The solid vertical line is the location of the col-
umn wall. The respective particle and gas mass flow rates are
„a… 1.05 and 0.45 kg/s, „b… 0.67 and 0.46 kg/s, and „c… 0.39 and
0.44 kg/s.
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The averaged axial gas temperature data for tests conducted
with the basket distributor are shown in Fig. 9, presented for three
representative tests at high, low, and midrange solid flow rates.
Gas flow rates were approximately constant from test to test.
These data are plotted against the gas temperature profiles pre-
dicted by the uniform mixing model. Better agreement between
the measured temperature data and the model predictions is ob-
served. This improved agreement is due largely to the increased
spreading and mixing of the gas and particles in the column by the
basket distributor, causing the conditions of the experiment to
agree more closely with the uniform mixing model. This im-
proved mixing is also observed in plots of the measured pressure
profiles in the column �Fig. 10�. The profiles more closely ap-
proximate the linear hydrostatic profile predicted by the uniform

mixing model, though imperfect mixing due to local particle
maldistributions near the distributor is still observed at the top of
the column.

In order to evaluate the performance of the falling-bed heat
exchanger it is useful to make estimates of the apparent effective-
ness �. Approximations to the various parameters of the heat ex-
changer are presented for the purposes of illustration only, as the
nature of the falling-bed heat exchanger and the temperature-
dependent specific heat of the bauxite violate some of the assump-
tions used in the derivation of the theoretical �-NTU expression
�Eq. �10��. The effective thermal capacities of both streams are
estimated by

Cparticles =

�
Ts,i

Ts,o

ṁscs�Ts�dTs

Tg,i − Ts,i
�16�

Fig. 9 Axial gas temperature profiles for tests with basket dis-
tributor. Measured temperatures „symbols… plotted against pre-
diction of uniform mixing model „solid line…. The respective
particle and gas mass flow rates are „a… 0.94 and 0.47 kg/s, „b…
0.58 and 0.45 kg/s, and „c… 0.28 and 0.45 kg/s.

Fig. 10 Axial pressure profiles for tests with basket distribu-
tor. Measured pressures plotted against prediction of uniform
mixing model „black line…. Open symbols are the sum of the
measured pressure differences up to that elevation. The gray
symbol is the pressure difference over the entire column. The
respective particle and gas mass flow rates are „a… 0.94 and
0.47 kg/s, „b… 0.58 and 0.45 kg/s, and „c… 0.28 and 0.45 kg/s.
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Cgas = ṁgcg �17�

The corresponding thermal capacitance ratio Cr, effectiveness
�, and maximum theoretical heat transfer rate qmax are defined in
the same manner as the theoretical model. Note that this method
of comparison would not be useful if the effectiveness of the heat
exchanger without the distributor was close to unity. In that situ-
ation, the relative performance would need to be evaluated with a
comparison of the temperature profiles within the column.

In order to observe the effect of the particle distributor on the
heat transfer performance of the falling-bed heat exchanger, the
temperatures or heat transfer rates for experiments performed both
with and without the distributor must be compared at the same
operating point of gas and particle flow rates. This comparison
was accomplished by plotting the measured apparent effectiveness
of both sets of experiments against the ratio of particle to gas
thermal capacities �Fig. 11�. Due to the imperfections in mixing,
the simple distributor does not come close to the effectiveness
predicted by the model. However, it can be seen that the effec-
tiveness of the falling-bed heat exchanger is enhanced by the ad-
dition of the basket distributor. The performance of the falling-bed
heat exchanger with the basket distributor is closer to the effec-
tiveness predicted by the uniform mixing model.

5 Conclusions and Discussion
Designers of falling-bed heat exchangers are typically trying to

achieve a certain heat transfer effectiveness for the lowest struc-
tural cost. Once the particle material and mass flows have been
determined, the column diameter is generally scaled to keep the
mean gas velocity below the terminal velocity of particles. At this
point in the design process, the only variables available to opti-
mize the performance of the heat exchanger are the column height
and the method of particle distribution. A good particle distributor
design can mean a shorter column for the same effectiveness, and
therefore reduced structural costs.

The uniform mixing model represents the “perfect” or “ideal”
falling-bed heat exchanger where the rate of radial mixing of gas
temperature and momentum is infinite. The amount of particle
area available for heat exchange is a maximum, and the highest
possible temperature difference is maintained, and therefore the
predicted heat transfer rate is the highest possible value. The uni-
form mixing model cannot generally describe the falling-bed heat
exchanger, as it cannot account for differences in particle distribu-

tor design, or in any other source of radial maldistribution. As can
be seen in Fig. 5, the uniform mixing model consistently overes-
timates the heat transfer rate, for both cases with and without the
particle distributor basket.

Despite these shortcomings, the uniform mixing model estab-
lishes an upper bound that describes the maximum possible effec-
tiveness of the falling-bed heat exchanger, as the model assumes
the perfect distribution and mixing of the gas and particles. The
experimental performance of a particular distributor design can be
compared to this bound, and a judgment can be made by the
designer as to whether further cost and effort is warranted to im-
prove the performance of the design. For example, this model can
be utilized by designers to determine the maximum possible heat
transfer effectiveness, to which the performance of various par-
ticle distribution methods can be compared and evaluated.

In this study it has been determined that the discrepancy be-
tween the predicted and measured performance is not attributable
to solid volume fraction effects on particle drag and heat transfer.
This discrepancy in performance has been shown to be a function
of the method of introducing the particles into the bed. This ob-
servation suggests the importance of modeling the gradients in the
flow, and further suggests the need to incorporate the effects of
viscosity and turbulence into any realistic model of the falling-bed
heat exchanger. Previous experimental experience suggests that
accepted single particle correlations for drag and heat transfer are
appropriate if these maldistributions can be properly modeled. The
use of computational fluid dynamics �CFD� would permit the
modeling of turbulence and permit the resolution of spatial mald-
istributions in the flow.

The experimental data presented above are intended to serve
the development and validation of two-phase CFD modeling, as
well. A very good energy balance has been obtained, indicating
that steady-state conditions and a good isolation from the environ-
ment were achieved. The boundary conditions have been carefully
controlled and faithfully reported. The geometry has been kept
simple, to simplify modeling efforts. It is expected that this ex-
periment will be a good test case for two-phase turbulence and
heat transfer models.
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Nomenclature
a1, a2, a3 � coefficients for Morsi and Alexander drag cor-

relation �	�
A � available surface for heat exchange �m2�

Ac � column cross sectional area �m2�
cg, cs � specific heats of gas and solids �J/kg K�

CD � drag coefficient �	�
Cgas � stream heat capacity rate of gas �W/K�
Cmin � minimum stream heat capacity rate �W/K�
Cmax � maximum stream heat capacity rate �W/K�

Cparticles � stream heat capacity rate of particles �W/K�
Cr � ratio of specific heat capacities �Cmin/Cmax�

�	�
d � spherical particle diameter �m�
g � acceleration of gravity at Earth’s surface

�9.81 m/s2�
h � heat transfer coefficient �W/m2 K�

kg � thermal conductivity of air �W/m K�
L � column height �m�

LMTD � Log mean temperature difference �K�
ṁg, ṁs � mass flow rates of gas and solids �kg/s�

Nu � Nusselt number for particle �hd /kg� �	�
NTU � Number of transfer units �	�

Pr � Prandtl number of air �	�
q � heat transfer rate between gas and solids �W�

Fig. 11 Comparison of apparent experimental effectiveness of
falling-bed heat exchanger with and without basket distributor
to uniform mixing model as a function of ratio of particle to gas
stream thermal capacities. Vertical gray line indicates a capaci-
tance ratio Cr of one. Dotted line represents the uniform mixing
model assuming a constant specific heat of bauxite.
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qdata � average of measured heat transfer qgas and
qparticles �W�

qgas � measured heat transfer rate from gas �W�
qmax � maximum possible heat transfer rate in a heat

exchanger Cmin�Th,i−Tc,i� �W�
qparticles � measured heat transfer rate to particles �W�

qumm � heat transfer rate predicted using uniform mix-
ing model �W�

Red � Reynolds number based on particle diameter
and terminal velocity ��gdvt /�� �	�

Tg � temperature of gas stream in heat exchanger
�K�

Ts � temperature of solids stream in heat exchanger
�K�

Tg,i, Tg,o � inlet and outlet temperatures of gas stream in
heat exchanger �K�

Ts,i, Ts,o � inlet and outlet temperatures of solids stream
in heat exchanger �K�

U � heat exchanger coefficient �W/m2 K�
uo � superficial gas velocity relative to column

�m/s�
Vc � column volume �m3�
vt � particle terminal velocity relative to gas �m/s�
z � distance between two vertical points �m�

�p � pressure gradient �Pa/m�

Greek Letters
� � volume fraction of solids in a gas-solid suspen-

sion �	�, thermal diffusivity of gas �m2/s�
�pcolumn � pressure difference between two vertical points

in column �Pa�
�precorded � pressure difference measured by differential

pressure transducer �Pa�

� � heat exchanger effectiveness �q /qmax� �	�
� � viscosity of air �Pa s�

�g, �s � density of gas and solids �kg/m3�
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Enhancement of Heat Transfer by
an Electric Field for a Drop
Translating at Intermediate
Reynolds Number
The enhancement of heat transfer by an electric field to a spherical droplet translating at
intermediate Reynolds number is numerically investigated using a finite volume method.
Two heat transfer limits are considered. The first limit is the external problem where the
bulk of the resistance is assumed to be in the continuous phase. Results show that the
external Nusselt number significantly increases with electric field strength at all Reynolds
numbers. Also, the drag coefficient increases with electric field strength. The enhance-
ment in heat transfer is higher with lower ratio of viscosity of the dispersed phase to the
viscosity of the continuous phase. The second heat transfer limit is the internal problem
where the bulk of the resistance is assumed to be in the dispersed phase. Results show
that the steady state Nusselt number for a combined electrically induced and transla-
tional flow is substantially greater than that for purely translational flow. Furthermore,
for a drop moving at intermediate Reynolds number, the maximum steady state Nusselt
number for a combined electrically induced and translational flow is slightly greater than
that for a purely electric field driven motion in a suspended drop.
�DOI: 10.1115/1.2033906�

Keywords: Heat Transfer Enhancement, Electric Field, Droplet, Numerical Analysis

Introduction
When an electrical field is applied to a dielectric drop, the elec-

tric field induces stresses on the drop surface. The tangential
stresses produce circulatory fluid motion in the drop and the con-
tinuous phase which results in increase in the heat or mass transfer
rate. Taylor �1� was perhaps the first to experimentally demon-
strate electrically induced flow in a suspended drop of silicone oil
in a mixture of castor oil and corn oil. Based on a leaky dielectric
model, he calculated the induced stresses at the drop surface due
to applied electric field. In Stokes flow regime, he derived the
stream function for flow in the drop interior and that in the con-
tinuous phase. His analytical solutions for the flow field have been
extensively used to study the heat transfer to a suspended drop �2�.

Heat and/or mass transfer studies of a droplet in electric field
have typically considered two limits based on the relative magni-
tude of the resistance to heat transfer in the continuous and the
dispersed phase. One limit, where the bulk of the resistance to the
heat transport is in the dispersed phase, is known as the internal
problem. The other limit, where the resistance to heat transfer is
mainly in the continuous phase, is known as the external problem.
The steady-state Nusselt number for a conjugate problem, where
the heat transfer resistances in the two phases are comparable, can
be estimated from the individual Nusselt numbers for the internal
and external problem as described by Abramzon and Borde �3�.
When the time scale for the external Nusselt number to approach
its steady-state value is small compared to the time scale for tem-
perature change in the drop interior, the heat transport in the con-
tinuous phase can be considered to be quasi-steady, and the steady
state results obtained for the external problem can be used.

Oliver, Carleson, and Chung �4� carried out a numerical solu-
tion to the unsteady heat transfer to a droplet suspended in an

electric field. A fully developed flow field was assumed and the
droplet was suddenly exposed to a step change in the ambient
temperature with the bulk of the resistance being in the droplet.
Initially it was found that the Nusselt number oscillates for larger
values of Peclet numbers. As time increases the Nusselt number
approaches a steady value. At low values of Peclet numbers, the
steady-state Nusselt number was found to be close to the pure
diffusion limit of 6.6. As Peclet number increases, the steady-state
Nusselt number becomes independent of Peclet number for large
Peclet numbers and approaches 29.8 at high Peclet number �2�.
This is considerably greater than the steady state internal Nusselt
number of 17.66 for a purely translating drop under creeping flow.

The transient heat transfer in a fluid sphere translating in an
electric field was analyzed by Chung and Oliver �5� in creeping
flow regime with thermal resistance being in the dispersed phase.
The electric field strength was expressed in terms of a parameter
E, defined as the ratio of electrically induced to translation-
induced maximum surface velocity. It was shown that at high
Peclet number, the electric field effects are negligible for E less
than 0.5 while translation is unimportant for E greater than 10.

Griffiths and Morrison �6� analyzed the external heat transfer
from a drop in an electric field at low Peclet number using a
regular perturbation expansion. It was found that a perturbation
about the zero flow solution was everywhere valid for analysis of
transport due to the low Peclet number creeping flow generated by
an electric field. These solutions were accurate up to a Peclet
number of 60. Sharpe and Morrison �7� investigated the external
steady-state heat or mass transfer to a drop in an electric field at
low values of the Reynolds number. The overall Nusselt number
was found to increase monotonically with the Peclet number.

Chang and Berg �8� analyzed the fluid flow and mass transfer
behavior of a droplet translating in an electric field at intermediate
Reynolds numbers. They adopted an approximate Galerkin
method to solve the external problem and predicted drag coeffi-
cients for a range of Reynolds numbers and viscosity ratios. How-
ever, it appears that the contribution from the normal viscous
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stress on the drop surface was not considered in the drag force
calculation. The external mass transfer rates were obtained for
very high Peclet numbers. Their mass transfer calculations were
based on a thin boundary layer approximation and restricted to
very high Peclet numbers. The electric field effect was character-
ized by a dimensionless parameter W, which was defined as the
ratio of electrical and gravitational effects. They concluded that,
for a substantial increase in the rate of transport due to the electric
field, the value for this dimensionless parameter should be signifi-
cantly greater than unity. For negative W the electrically induced
flow is from the equator to the pole on the drop surface. It was
found that even at moderate negative values of W, enhancement in
mass transfer was not obtained. As such, we have considered only
positive values of W in this study.

In this paper we address the situation that would be applicable
in direct-contact heat exchange application of a droplet moving in
a continuous medium in intermediate Reynolds number regime.
The analysis removes the earlier restrictions of the creeping flow
limit and the restriction of the very high Peclet number limit.

Formulation
Consider a spherical droplet moving steadily in a uniform elec-

tric field. The flow field is considered axi-symmetric with the
origin of the coordinate system at the center of the drop and the
thermophysical properties are considered constant. The flow in the
two phases and the external heat transfer are considered steady
whereas the heat transfer in the internal problem is considered as
transient. We note that the internal heat transfer must be consid-
ered transient as no nontrivial steady solution exits for the droplet
temperature variation. A schematic of the problem is shown in the
left half of Fig. 1 with typical stream lines for purely translational
motion. The right half of Fig. 1 shows typical stream lines for
purely electric field induced flow in a suspended drop. The as-
sumption of spherical drop shape needs some discussion. The
drop distortion from sphericity is governed by the Reynolds, We-
ber, Eotvos, and capillary numbers. The drop may deform at el-
evated Reynolds number. Additionally at high electric field
strengths, the drop may deform in a prolate or an oblate shape
based on Taylor’s discriminating function which is related to the
thermophysical properties of the two phases. As such for some
combination of thermophysical properties, the deformation due to
hydrodynamic and electrical effects may nearly cancel each other

keeping the drop nearly spherical. However, in some cases, the
two effects may be additive, leading to significant deviations of
drop shape from a sphere. The exact calculation of the drop shape
is computationally challenging task even for a suspended drop �9�.
As such we have considered a spherical drop in our model.

Governing Equations
In terms of the following dimensionless parameters Ui

=U* /U�, �=R�*, p= �p*−p�� / �1/2��1U�
2 , Re=U�2R /�1, T1

= �T1
*−T�� / �Ts−T��, t= t*�2 /R2, and T2= �T2

*−T0� / �T�−T0�, the
governing equations are:

Continuous phase

� · U� 1 = 0 �1�

U� 1 · �U� 1 = −
1

2
� p1 +

2

Re
�2U� 1 �2�

U� 1 · �T1 =
2

Pe1
�2T1 �3�

Dispersed phase

� · U� 2 = 0 �4�

U� 2 · �U� 2 = −
1

2
� p2 +

2

Re
k��

2U� 2 �5�

�T2

�t
+

Pe2

2k�

�U2 · �T2� = �2T2 �6�

The equations are transformed in terms of vorticity and stream
function. The stream function is introduced such that

Ur = −
1

r2 sin �

��

��
and U� =

1

r sin �

��

�r
�7�

The vorticity is

�� = � � U� = �1

r

�

�r
� 1

sin �

��

�r
� +

1

r3

�

��
� 1

sin �

��

��
��i�	 �8�

Since the flow is assumed to be axi-symmetric, we have ��

=� · i�
.
The momentum conservation equations in terms of stream func-

tion and vorticity become

U� 1 · ��� 1 − ��� 1 · ��U� 1 =
2

Re
�2�� 1 �9�

�U� 2 · ��� 2� − ��� 2 · ��U� 2 =
2

Re
k��

2�� 2 �10�

Equations �3�, �6�, and �8�–�10� are the final governing equations
for the problem. These are subject to the following boundary con-
ditions. At infinity, uniform flow, zero vorticity, and uniform tem-
perature are specified.

As r→�, �1→ �1/2�r2 sin2 � ; �1→0; T1→0.
At �=0 and �=�, the symmetry condition gives 0=�1=�2

=�1=�2=�T1 /��=�T2 /��.
At the interface r=1, zero normal velocity condition gives �1

=�2=0.
Using the continuity of tangential velocity, the shear stress bal-

ance at the interface,�Er�
* +�1r�

* =�2r�
* , can be written as

R

U�
2
�Er�

* +

1


2
�1 + 2�1 −


1


2
�U� = �2 �11�

where U�=U1�=U2�.

Fig. 1 Schematic diagram showing the coordinate system and
streamlines for purely translating drop and for purely electric
field driven flow for a suspended drop
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The shear stress caused by the electric field �Er�
* is given by

Taylor �1� and can be written in terms of the maximum surface
velocity induced by the electric field �V� for a suspended drop as

�Er�
* = 10V*
1 + 
2

R
cos � sin � �12�

V* = V U� =
9E2Rd2

8��2 + �1/�2�2

�1 − ��1d1�/��2d2��
5�
1 + 
2�

�13�

Hence, in earlier studies in the creeping flow regime, the relative
strength of the electric field was defined in terms of a parameter

Ŵ =
U�,max�r=1�due to purely electric field driven flow in suspended drop

U�,max�r=1�due to purely translational motion in creeping flow
�14�

Ŵ =
4V*�1 + k
�

U�

�15�

�2 =
�1

k


+
2�k
 − 1�

k


U� +
10Ŵ

4k


sin � cos � �16�

However, the above equation provides the ratio of maximum
surface velocities by purely electrically induced flow to purely
translational flow only in the limit of creeping flow. For the inter-
mediate Reynolds number, the maximum velocity on the drop
surface due to pure translational motion must be evaluated nu-
merically. For each Reynolds number considered, the program is
executed for a purely translational flow without applied electric
field and the maximum velocity surface is obtained. We introduce
the term W, to indicate the ratio of maximum electric field in-
duced surface velocity to that due to purely translational motion in
intermediate Reynolds number flow. The boundary condition can

be written in terms of W by writing, Ŵ=aW. Here a is a param-
eter defined such that W=1 corresponds to equal electric field
driven velocity and purely translational maximum surface veloc-
ity. For creeping flow, a=1. In this manner the equation is consis-
tent with earlier work and is appropriate for the intermediate Rey-
nolds number regime. Therefore the condition of continuity of
shear stress can be written as

�2 =
�1

k


+
2�k
 − 1�

k


U� +
10aW

4k


sin � cos � �17�

The transient temperature distribution in the dispersed phase is
solved using Eq. �6�. The initial temperature in the drop interior is
considered uniform at T0. In dimensionless form this condition is
T2�t=0�=0. For a conjugate problem, the interface conditions at
the drop surface are: continuity of temperature T1

*�R ,��
=T2

*�R ,�� and equality of heat flux −k1��T1
* /�r*�=−k2��T2

* /�r*�.
However, a conjugate problem is not addressed here. We have
considered two limits based on the relative resistance to heat
transfer in both phases. The heat transfer resistances are depen-
dent on the ratio of thermal diffusivities in the two phases. When
the thermal diffusivity of the continuous phase is much larger than
that of the dispersed phase, the resistance to heat transfer is very
small in the continuous phase. This is the internal problem. In
such case, the drop surface temperature will be close to the far
field temperature.

Therefore, for the internal problem, we consider: T2�r=1�=1.
The external problem is treated by the steady form of the en-

ergy equation. The drop surface temperature is prescribed for the
external problem.

Hence, for the external problem, in dimensionless form: T1�r
=1�=1.

As shown by Abramzon and Borde �3�, the external heat trans-
fer can be considered steady when the time scale of drop heating
�or cooing� is much larger than the time required for the continu-

ous phase to reach the steady state solution. They showed that this
condition is met when �2c2 /�1c1�1. One example of such con-
dition is a liquid drop moving in a gaseous environment. More-
over, Abramzon and Borde �3� also showed that the overall Nus-
selt number for a conjugate problem can be obtained using steady
state external Nusselt number as 1/Nu	�k2 /k1��1/Nuinternal�
+1/Nusteady,external. As such, a time-independent solution of the
external problem provides useful information.

Drag Coefficients. A drag force is experienced by the fluid
sphere due to the net force in the direction of flow owing to the
pressure and shear stress

CD = CDp + CDf �18�

where the pressure drag is given by

CDp =

0

�

2p sin � cos �d� �19�

The stagnation pressure is obtained by integrating the r compo-
nent of the momentum equation along �=0 from r=� to 1. The
pressure variation along the surface is obtained by integrating the
� component of the momentum equation along r=1 �10�

The friction drag is

CDf =



0

�

��r�
* sin � − �rr

* cos ��2�R sin � R d�

�1/2��1U�
2�R2

In dimensionless form it becomes

CDf =
8

Re

0

� �� �U1�

�r
− U1��sin � − 2

�U1r

�r
cos ��sin � d� .

�20�

Nusselt Numbers. For the continuous phase the average Nus-
selt number is given by

N̄u =

0

�

−
�T1

�r
sin � d� �21�

Local nusselt number Nuloc=hloc2R /k1=−2��T1 /�r�.
The Nusselt number for the dispersed phase can be written in

terms of the bulk temperature by overall heat balance for the drop
as �5�

Nu =
2

3

1

�1 − Tb�
dTb

dt
. �22�

The bulk temperature is calculated as

Tb =
3

2

0

1

0

�

T2r
2 sin � d� dr . �23�
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Numerical Solution and Model Validation
We solve the external problem with an exponential transforma-

tion, r=ez, whereas the internal flow and energy equations are
solved in the regular spherical coordinate system. The governing
equations are discretized using a finite volume approach with the
power-law scheme of Patankar �11�. In both phases, 60�200 grid
points were used in the tangential and radial directions, respec-
tively. The results were obtained by doubling the grid in both
directions to make sure that the results are grid independent. The
changes in Nusselt number and drag coefficient were substantially
less than 1%. The computational infinity is located at z=5 or r�

=148.41. Earlier numerical analyses of heat/mass transfer to a
drop translating in the intermediate Reynolds number regime in-
dicate that the computational infinity located beyond 20 diameters
is adequate �2�. To check the sensitivity of r�, we doubled the
value of r� and executed a case for Re=100, Pr=0.7 for a solid
sphere. The change in results was negligible ��0.5% �.

The model was validated by comparing results for several lim-
iting cases where numerical and experimental results are available
in published literature. These include flow over a solid sphere
�Clift et al. �12�, and Comer and Kleinstreuer �13�� in Table 1,
flow over a liquid drop with k
�1�Comer and Kleinstruer �14��
in Table 2, and flow over a liquid drop with k
�1�Oliver and
Chung �15�� in Table 3. Furthermore, the surface velocity profiles
for different Reynolds numbers and viscosity ratios were calcu-
lated and were found to match closely with those of Oliver and
Chung �15� for k
=0.3 and 3. Comparison of steady state Nusselt
number for heat transfer in a drop suspended in uniform electric
field is shown in Table 4 for internal problem �Oliver et al. �4��
and in Table 5 for external problem �Sharpe and Morrison �7��.
The above comparisons validate our numerical model for the lim-
iting cases of W=0 and W=�. For finite values of W, results are
compared with those of Chung and Oliver �5�. Chung and Oliver
use a different notation �E instead of W� to indicate the relative
strength of the electric field. Figure 2 shows the transient variation
of Nusselt number for two values of E plotted with the results

from Ref. �5�. Table 6 provides a comparison of the steady state
Nusslet number for three values of E. It is clear from Tables 1–6
and Fig. 2, that in all of these cases our results for drag coeffi-
cients and Nusselt numbers agree very closely with published re-
sults. The excellent agreement of our results with earlier numeri-
cal results and experimental correlations discussed above can be
considered as validation of our computational model.

Results and Discussion
Results were obtained for the Reynolds number based on the

external flow of 20, 50, 80, and 100; Pr1=5, and the density ratio
of 1. The electric field parameter W is varied from 0 �for no
electric field� to 10 for high electric field.

Table 1 Validation of results for drag coefficient for a rigid
sphere. Pr=0.7.

Table 2 Validation of results for Cd and Nusselt Number for a
fluid sphere „k�=40.2…

Table 3 Validation of results for Cd for a liquid sphere „k�

=0.3…

Table 4 Comparison of results for internal steady state Nus-
selt number

Table 5 Comparison of results for average external Nusselt
number

1090 / Vol. 127, OCTOBER 2005 Transactions of the ASME

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Effect of Electric Field on the Flow
In Figs. 3 and 4, the streamlines are plotted for different values

of W=0, 1, 5, and 10 for translational Reynolds number of 50. As
discussed by Oliver and Chung �15�, unlike the flow over a solid

sphere, for k
=3, the flow does not have a large circulatory vortex
in the drop rear for a purely translating drop at Re=50. This is
seen in left hand side of the Fig. 3. The applied electric field
develops shear stress that produces a flow field with two vortices
in the drop interior. For positive values of W, the electrically
induced flow is from the poles to the equator. Therefore, when
applied to a translating drop, the electric field tends to strengthen
the internal circulation in the front half of the drop and introduces
a weaker vortex in the rear half of the drop. This vortex in the rear
half of the drop produces a large recirculating pattern downstream
of the drop. This is seen in the right half of Fig. 3. As W is
increased further, the magnitude of the electrically induced stress
on the surface increases and consequently the strength of the re-
circulation in the drop increases. As evident in Fig. 4, at very high
electric field with W=10, the flow in the drop interior resembles
the flow in a drop suspended in electric field. However, at this
high electric field strength, the outer flow retains the effect of
translational motion away from the drop surface.

Figure 5 shows the surface pressure variation for W=0 and 1. It
is observed that as the applied electric field increases the stagna-
tion pressure decreases. With no electric field, we see that the
surface pressure drops from stagnation pressure to a minimum and
then recovers to a value much lower than the front stagnation
pressure. From the graph, it is clear that the surface pressure at

Fig. 2 Comparison of the transient variation of Nusslet num-
ber with Chung and Oliver „Ref. †5‡…. Chung and Oliver have
used a notation where the relative electric field strength is
called E „instead of W….

Table 6 Comparison of results for Pe=250 „based on surface
velocity… with Chung and Oliver „Ref. †5‡…

Fig. 3 Internal and external streamlines for W=0 and 1, Re
=50, k�=3

Fig. 4 Internal and external streamlines for W=5 and 10, Re
=50, k�=3

Fig. 5 Variation of surface pressure for W=0 and 1, Re=50,
and k�=3

Journal of Heat Transfer OCTOBER 2005, Vol. 127 / 1091

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



W=1 maintains a higher value than that for W=0 at at the front
side of the drop. This leads to an increase in pressure difference
between the front and the rear half of the drop. Thus the pressure
drag coefficient increases as W increases. The tangential shear
stress will significantly increase with application of electric field
in the rear half of the drop but decrease slightly in the front half of
the drop. This is due to the change in the surface velocity with the
application of the electric field. Once the electric field is applied,
the surface velocity increases in the front half of the drop. This
decreases the shear stress experienced by the drop in the front
half. The surface velocity in the rear half of the drop is in the
opposite direction of the flow which leads to higher shear stress in
the rear half of the drop. The overall effect is an increase in the
friction drag with increase in W. The variation of the coefficient of
drag with Reynolds number is shown in Fig. 6 for different values
of W. It is found that, at a given flow Reynolds number, the drag
coefficient increases with the applied electric field. In general, for
particular electric field strength the drag coefficients decrease with
increase in Reynolds number.

Heat Transfer

The External Problem. We first consider the external heat
transfer problem with the limit of majority of the heat transfer
resistance being in the continuous phase. Figure 7 shows the iso-
therms for W=0 and 5, for Re=50. In both cases, as expected, the
temperature contours are dense near the front stagnation point,
indicating high temperature gradients. With W=5, the large recir-
culation in the drop rear brings hot fluid close to the drop surface,
and hence, the temperature gradients are high at the rear part of
the drop as well. The variation of the local Nusselt number with
application of electric field is shown in Fig. 8 for Reynolds num-
bers of 50. With no applied electric field, W=0, the local Nusselt
number decreases monotonically along the drop surface at this
Reynolds number and at lower Re. However, higher Reynolds
number, the local Nusselt number decreases to a minimum value
and then increases slightly in the rear portion of the drop due to a
recirculatory vortex that is present even without the application of
the electric field at high Reynolds number. The recirculation tends
to bring fluid close to the drop surface and consequently increas-
ing the local Nusselt number slightly in the rear of the drop. This
phenomenon is significantly increased with application of electric
field. At higher W, the circulation in drop rear is so large and
strong that the local Nusselt number increases to values closer to
those found at the front stagnation point. Moreover, with applied

electric field, with increased surface velocity in the front half of
the drop, the Nusselt number in the front of the drop increases as
well. The net effect of higher heat transfer rate both in the front
and the rear, results in a significant increase in the overall Nusselt
number with increasing W. Figure 9 shows the enhancement in
heat transfer with increase in W at different Reynolds number. It is
seen from the figure that significant enhancement in heat transfer
is obtained for W�1. The increase in Nusselt number with in-
crease in W is more pronounced at higher Reynolds number.

The Internal Problem. The transient internal temperature
variation is solved using an alternating direction implicit scheme.
The steady state Nusselt number is then computed using the bulk
mean temperature. Figure 10 shows the variation of Nusslet num-
ber with dimensionless time for different vales of W. We note that
increase in W results in increase in the maximum tangential ve-
locity at the drop surface. In all earlier work, the results were
presented in terms of Peclet number based on the maximum sur-
face velocity. For all values of W, conduction is the dominant heat
transfer mechanism at short times. This is due to the steep tem-
perature gradients near the drop surface. For low W, conduction is
the dominant mechanism at all times. At higher W, which corre-
sponds to higher Peclet number based on the surface velocity, the
Nusselt number first decreases for short times and starts increas-

Fig. 6 Variation of drag coefficient with Reynolds numbers for
different values of W with k�=3

Fig. 7 External isotherms for W=0 and 5 at Re=50, Pr1=5, and
k�=3

Fig. 8 Local Nusselt number variation with application of elec-
tric field at Re=50, Pr1=5, and k�=3
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ing thereafter. This is because the cold fluid from the drop interior
is brought near the drop surface due to the circulatory motion.
This results in the oscillation of the Nusselt number before it
reaches a steady value. These oscillations are more pronounced
for higher values of W. As a result of fluid convection, the tem-
perature gradients along each streamline diminish. Then the heat
transport is mainly in the direction perpendicular to the stream-
lines. Hence, the Nusselt number variation attains a steady state.

Figure 11 shows the variation of the steady state Nusselt num-
ber with Peclet number based on the maximum surface velocity
for different electric field strengths. It is observed that at lower
Peclet numbers, the steady state Nusselt number does not vary
much with the electric field strength. At high Peclet numbers, the
increase in the steady state Nusselt number with the increase of
the applied electric field is high. We note that the maximum steady
state Nusselt number due to purely electric field induced flow for
a suspended drop is 30 in creeping flow regime. We see that the
maximum steady state Nusselt number obtained here at very high
values of W is more than that for a pure electric field driven flow.
This is because the internal streamlines are shifted towards the
boundary at higher Reynolds number due to the larger velocity
gradients at higher Reynolds number. Figure 12 compares the in-
ternal streamlines in our case with that of a pure electric field
driven flow. At high Peclet number, the temperature becomes uni-
form along each streamline very quickly and the heat transfer

continues primarily perpendicular to the streamlines. The rate of
heat transfer is inversely proportional to the distance of the vortex
center to the drop surface. With a slight decrease in this distance
at higher Reynolds number, the Nusselt numbers are correspond-
ingly higher than the maximum Nusselt number of 30 obtained for
creeping flow. Such increase in the maximum Nusselt number was
reported by Hader and Jog �16,17� for deformed drops.

Effect of Viscosity Ratio „k�…

Different values of k
=0.7, 1.1, 3, 5, and 10 are used to study
the effect of viscosity ratio on the flow and heat transport proper-
ties. The change in the coefficient of drag is computed and is
plotted in Fig. 13 for these values of viscosity ratios. Without
electric field, the drag coefficient is higher with higher viscosity
ratio. However, at high W, the trend is reversed. The maximum
tangential velocity of the drop surface is higher at lower viscosity
ratio. Therefore increasing W has a larger effect for k
=3 than for
k
=10. The Nusselt numbers in the five values of viscosity ratio
are plotted in Fig. 14. It is observed that the average Nusselt
number at a particular value of the applied electric field strength
decreases as the viscosity ratio k
 increases. This is because, as k

increases, the dispersed phase fluid becomes more viscous than
the continuous phase fluid and the strength of the internal circu-
lation decreases with higher viscosity ratio. At low values of elec-
tric field strength, the difference in Nusselt number is less than
that at higher values of electric field strength. We note that the
maximum tangential surface velocities for k
�1 are substantially

Fig. 9 Enhancement in average Nusselt number with W for
different values of Reynolds number „20, 50, 80, and 100…, Pr1
=5, and k�=3

Fig. 10 Variation of Nusselt number with dimensionless time
t= t*�2 /R 2 for Re=50, Pr2=21.21, and k�=3

Fig. 11 Variation of steady state Nusselt number with Peclet
number, Re=80, and k�=3

Fig. 12 Comparison of internal stream lines for flow due to
electric field and translational motion at Re=80 „dashed lines…,
and internal stream lines for purely electric field driven flow for
a suspended drop „solid lines…
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greater than those obtained with k
�1. As W indicates the ratio
of maximum surface velocity with electric field to that with purely
translational motion, for k
�1, even for moderate values of W,
the surface velocity becomes greater than the free stream velocity.
In an intermediate Reynolds number regime, it is doubtful if a
stable, axi-symmetric �as assumed in the formulation� flow would
be obtained under such conditions. For k
=0.7, we were not able
to obtain stable solutions for W�4.

Conclusions
The heat transfer to a spherical droplet translating in an electric

field has been studied in the intermediate Reynolds number re-
gime. The external and the internal heat transfer problems were
considered. From this study we can draw the following conclu-
sions:

• The applied electric field induces shear stress at the drop
surface that produces a flow field with two vortices in the
drop interior for a translating drop. It strengthens the inter-
nal circulation in the front half of the drop and creates a
weaker vortex in the rear. The magnitude of the electrically
induced stress on the surface increases and consequently the
strength of the recirculation in the drop increases as the

magnitude of the electric field is increased. With increase in
electric field strength, the flow separation at the drop rear is
more pronounced.

• The overall drag coefficient increases with increasing elec-
tric field strength. The change in the drag coefficient is
lower at higher viscosity ratio between the dispersed and the
continuous phase.

• With no applied electric field, the local Nusselt number de-
creases monotonically from the front stagnation point. With
application of the electric field, the local Nusselt number
increases both in the front and the rear half of the drop. The
increase in the local Nusselt number is significantly higher
in the rear part of the drop compared to the front part of the
drop. Consequently, the average Nusselt number increases
with increase in the applied electric field.

• For a fixed value of W, the increase in average Nusselt num-
ber is higher at higher Reynolds numbers.

• In the internal problem, the maximum steady state Nusselt
number attained at high Peclet numbers were substantially
higher than those obtained for a purely translational motion.
Moreover, the maximum steady state Nusselt numbers at
high Peclet numbers for a drop moving in an electric field
were found to be more than those obtained for a purely
electric field driven flow.

• For a given electric field strength, the average Nusselt num-
ber decreases as the viscosity ratio increases.

Nomenclature
a � parameter in Eq. �17�

Cd � drag coefficient
d � dielectric constant
h � heat transfer coefficient
k � thermal conductivity

k� � kinematic viscosity ratio, �2 /�1
k
 � dynamic viscosity ratio, 
2 /
1
Nu � Nusselt number based on drop diameter,

h 2R /k
p � pressure

Pe � Peclet number based on drop diameter,
U�2R /�

Pr � Prandtl number, � /�
r � radial coordiante
R � radius of the spherical droplet

Re � Translational Reynolds number, U�2R /�1
t � time

T � temperature
U � velocity
V � maximum electric field induced tangential

velocity

Ŵ � ratio of maximum electric field induced surface
velocity for a suspended drop to that for a
purely translating drop in creeping flow 4V*�1
+k
� /U�

W � ratio of maximum electric field induced surface
velocity for a suspended drop to that for a
purely translating drop in intermediate Rey-
nolds number regime

�r ,� ,	� � spherical coordinates

Greek symbols
� � thermal diffusivity

 � dynamic viscosity
� � kinematic viscosity
� � density
� � electrical resistivity
� � stress
� � stream function
� � vorticity

Fig. 13 Variation of drag coefficient with W for different vis-
cosity ratios k�=0.7, 1.1, 3, 5, and 10, Re=50

Fig. 14 Enhancement of heat transfer with W for different vis-
cosity ratios k�=0.7, 1.1, 3, 5, and 10, Re=50, and Pr1=5
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Subscripts
0 � initial
1 � continuous phase
2 � dispersed phase
b � bulk
s � surface

� � far field

Superscripts
* � dimensional quantities

References
�1� Taylor, G. I., 1966, “Studies in Electrohydrodynamics: the Circulation Pro-

duced in a Drop by an Electric Field,” Proc. R. Soc. London, Ser. A 291, pp.
159–166.

�2� Sadhal, S. S., Ayyaswamy, P. S., and Chung, J. N., 1997, Transport Phenom-
ena with Drops and Bubbles, Springer New York.

�3� Abramzon, B., and Borde, I., 1980, “Conjugate Unsteady Heat Transfer From
a Droplet in Creeping Flow,” AIChE J., 26, pp. 536–544.

�4� Oliver, D. L. R., Carleson, T. E., and Chung, J. N., 1985, “Transient Heat
Transfer to a Fluid Sphere Suspended in an Electric Field,” Int. J. Heat Mass
Transfer, 28, pp. 1005–1009.

�5� Chung, J. N., and Oliver, D. L. R., 1990, “Transient Heat Transfer in a Fluid
Sphere Translating in an Electric Field,” ASME J. Heat Transfer, 112, pp.
84–91.

�6� Griffiths, S. K., and Morrison, F. A., Jr., 1979, “Low Peclet Number Heat and
Mass Transfer From a Drop in an Electric Field,” ASME J. Heat Transfer,

101, pp. 484–488.
�7� Sharpe, L., Jr., and Morrison, F. A., Jr., 1984, “Numerical Analysis of Heat and

Mass Transfer From Fluid Spheres in an Electric Field,” ASME J. Heat Trans-
fer, 108, pp. 337–342.

�8� Chang, L. S., and Berg, J. C., 1983, “Fluid Flow and Transfer Behavior of a
Drop Translating in an Electric Field at Intermediate Reynolds Numbers,” Int.
J. Heat Mass Transfer, 26, pp. 823–831.

�9� Feng, J. Q., and Scott, T. C., 1996, “A Computational Analysis of Electrohy-
drodynamics of a Leaky Dielectric Drop in an Electric Field,” J. Fluid Mech.,
311, pp. 289–326.

�10� Subramanian, R., 2005, “Heat Transfer to a Droplet Translating in an Electric
Field,” M.S. thesis, University of Cincinnati.

�11� Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill,
New York.

�12� Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles,
Academic, New York.

�13� Comer, J. K., and Kleinstreuer, C., 1995, “A Numerical Investigation of Lami-
nar Flow Past Nonspherical Solids and Droplets,” ASME J. Fluids Eng., 117,
pp. 170–175.

�14� Comer, J. K., and Kleinstreuer, C., 1995, “Computational Analysis of Convec-
tion Heat Transfer to Non-spherical Particles,” Int. J. Heat Mass Transfer, 38,
pp. 3171–3180.

�15� Oliver, D. L. R., and Chung, J. N., 1987, “Flow About a Fluid Sphere at Low
to Moderate Reynolds Numbers,” J. Fluid Mech., 177, pp. 1–18.

�16� Jog, M. A., and Hader, M. A., 1997, “Transient Heat Transfer to a Spheroidal
Liquid Drop Suspended in an Electric Field,” Int. J. Heat Fluid Flow, 18, pp.
411–418.

�17� Hader, M. A., and Jog, M. A., 1998, “Effect of Drop Deformation on Heat
Transfer to a Drop Suspended in an Electric Field,” ASME J. Heat Transfer,
120, pp. 682–689.

Journal of Heat Transfer OCTOBER 2005, Vol. 127 / 1095

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Hua Sheng Wang
e-mail: h.s.wang@qmul.ac.uk

John W. Rose
e-mail: j.w.rose@qmul.ac.uk

Department of Engineering,
Queen Mary,

University of London,
London E1 4NS, United Kingdom

A Theory of Film Condensation
in Horizontal Noncircular Section
Microchannels
The paper presents a theoretical model to predict film condensation heat transfer from a
vapor flowing in horizontal square and equilateral triangular section minichannels or
microchannels. The model is based on fundamental analysis which assumes laminar
condensate flow on the channel walls and takes account of surface tension, interfacial
shear stress, and gravity. Results are given for channel sizes (side of square or triangle)
in the range of 0.5–5 mm and for refrigerants R134a, R22, and R410A. The cases
considered here are where the channel wall temperature is uniform and the vapor is
saturated at the inlet. The general behavior of the condensate flow pattern (spanwise and
streamwise profiles of the condensate film), as well as streamwise variation of local mean
(over section perimeter) heat-transfer coefficient and vapor mass quality, are qualita-
tively in accord with expectations on physical grounds. The magnitudes of the calculated
heat-transfer coefficients are in general agreement with experimental data for similar, but
nonidentical, channel geometry and flow parameters. �DOI: 10.1115/1.2033905�

Keywords: Condensation, Heat Transfer Enhancement, Microchannel, Noncircular Tube,
Theory, Surface Tension, R134a, R22, R410A, Refrigerant

Introduction
Heat transfer in microchannels has received increasing attention

in recent years. Earlier single-phase flow measurements indicated
unexpected results for channel dimensions of around 1 mm. These
are now thought to be attributable to experimental error and sur-
face roughness �see Palm �1��; only at much smaller hydraulic
diameters are methods for larger channels inappropriate in single
phase flow. For condensation, however, special effects due to sur-
face tension become important for noncircular channels with hy-
draulic diameters around 1 mm. This is due to the so-called “Gre-
gorig effect” �2� where changes in the condensate surface
curvature, in conjunction with surface tension, lead to pressure
gradients in the condensate film and enhanced heat transfer. This
has received considerable attention in connection with condensa-
tion on low-finned and inside microfinned tubes �these are dis-
cussed together with other surface tension affected condensation
problems by Rose �3��.

Recent work on condensation in small channels has been re-
viewed by Cavallini et al. �4�. Heat-transfer measurements for
condensation in microchannels have been made by Yang and
Webb �5�, Vardhan and Dunn �6�, Yan and Lin �7�, Kim et al. �8�,
Zhang and Webb �9�, Webb and Ermis �10�, Wang et al. �11�,
Garimella and Bandhauer �12�, Ermis and Ekmekci �13�, Kim et
al. �14�, Kim et al. �15�, and Baird et al. �16�. In most of these
investigations the vapor-side, heat-transfer coefficients are based
on overall measurements using “Wilson plots” and consequently
have large uncertainty �see Rose �17��.

The fact that heat transfer for condensation in small channels
has been found to be largely independent of orientation of the tube
suggests that the flow regime may be essentially annular for a
significant portion of the channel where most of the heat transfer
takes place. Increase in the extent of the annular flow regime with
decrease in hydraulic diameter for adiabatic air-water flow and for
condensation of R134a have been demonstrated �see Coleman
�18�, Coleman and Garimella �19–21�, and Garimella �22��. Thus,

for small diameter channels, uncertainties in calculation methods
associated with stratified, wavy, and slug/plug flow regimes found
with larger tubes, are reduced, making the problem more ame-
nable to theoretical analysis. However, as discussed below, sur-
face tension greatly complicates theoretical analysis through the
involvement of curvature of the condensate surface.

More recently, experimental investigations have been made in
which the tube wall temperature has been measured. Measure-
ments using multimicrochannel tubes with channels having hy-
draulic diameters of around 1 mm have been made by Koyama et
al. �23,24� and Cavallini et al. �25,26�. Data are reported for
R134a and R410A. Available empirical and semi-empirical mod-
els underpredict these data except at the lowest vapor mass fluxes.

The important mechanism of heat transfer enhancement during
condensation in noncircular microchannels is the surface tension
generated transverse pressure gradient in the condensate film. This
leads to condensate flow towards the corners and thins the film
along the sides of the channel giving rise to high heat-transfer and
condensation rates. The transverse pressure gradient arises from
variation of condensate surface curvature along the side of the
channel. Maximum thinning of the film occurs at approach to the
corners where the interface curvature changes abruptly. When the
channel dimension is small �microchannel� the ultrathin portion of
the film may occupy a significant part of the channel surface. A
theoretical approach along similar lines to the present work has
been reported by Zhao and Liao �27�. Zhao and Liao consider
downflow in a vertical triangular channel and give specimen nu-
merical results for condensation of steam. Other differences of
detail between the Zhao and Liao model and the present work are
discussed by Wang and Rose �28�.

The present work relates to condensation in horizontal square
and triangular microchannels. Preliminary results have been re-
ported �Wang et al. �29�, Wang and Rose �28,30��. The overall
objective of the research program is to establish methods for de-
termination of the optimum channel shape and dimensions for
given duty.

Theoretical Model
As in the treatment of Honda et al. �31� for condensation in

microfin tubes, the condensate film on the channel walls is treated
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by including surface tension and surface curvature effects together
with the Nusselt approximations for the condensate film, that is,
laminar flow with neglect of inertia and convection terms. The
problem and coordinates for square and triangular section micro-
channels are illustrated in Fig. 1. X and Y are fixed orthogonal
coordinates with the origin at the center of the lower channel
surface. x is measured along the channel surface from the center
of the top surface of the square section or the top corner of the
triangular section along the channel surface, y is measured nor-
mally outward from the channel surface, and z is measured along
the channel in the direction of vapor flow. xa, xb, xc, and xd are the
x coordinates at the foot of the perpendicular from origins O1 and
O2 of the polar coordinates. r is the radial polar coordinate mea-
sured from origins O1 and O2 and � is the polar angle shown in
Fig. 1. ri is the r coordinate of the condensate surface. The values
of xa, xb, xc, and xd are chosen so that origins O1 and O2 are
located in the vapor space. b is the side length of the channel cross
section. As described below and shown in Fig. 1, the condensate
flow on the channel walls is treated coupling orthogonal coordi-
nates �x ,y� for the flow on the sidewalls and polar coordinates
�r ,�� for the flow at the corners.

Condensation on Sidewalls. On the sidewalls of the channel
�0�x�xa, xb�x�xc, and xd�x�xm for square section; xa�x
�xb and xc�x�xm for triangular section�, the condensate film
thickness � is defined normal to the channel surface as shown in
Fig. 1. Neglecting the surface tension-induced pressure gradient in
the z direction, the momentum equation for the condensate film on
the side walls in the x direction and in the z direction are, respec-
tively

�l
�2u

�y2 + ��l − �v�g sin � =
�P

�x
�1�

�l
�2v
�y2 =

�Pl

�z
�2�

where u and v are the velocity components in the x direction and
in the z direction, respectively, �l is the dynamic viscosity of
condensate, �l and �v are the densities of condensate and vapor,
respectively, g is the specific force of gravity, � is the angle of the
normal to the channel surface to the Y coordinate �see Fig. 1�, and
P is the pressure difference �liquid side minus vapor side� be-
tween the condensate and vapor due to the effect of surface ten-
sion given by

P = − �/rc �3�

where � is the surface tension and rc is the local radius of the
curvature of condensate surface measured on the vapor side in the
plane normal to the channel given by

1

rc
=

�2�/�x2

�1 + ���/�x�2�3/2

for 0 � x � xa, xb � x � xc

and xd � x � xm for square section

for xa � x � xb and xc � x � xm for triangular section

�4�

Pl is the pressure in the condensate film. Neglecting streamwise
variation of the condensate surface curvature

�Pl

�z
=

dPv

dz
�5�

where Pv is the vapor pressure and dPv /dz is obtained from a
momentum balance for one-dimensional vapor flow

dPv

dz
+

�v

Av

d

dz
�Uv

2Av� +
�iSi

Av
= 0 �6�

where Av and Si are the area of vapor flow and perimeter of the
vapor-liquid interface in channel cross section, respectively, Uv is
taken as the local average velocity of the vapor which is calcu-
lated from the inlet mass flow minus the condensation rate up to
the position in question, �i is the streamwise interfacial shear
stress.

Neglecting transverse interfacial shear stress, the boundary con-
ditions for Eqs. �1� and �2� are

u = v = 0 at y = 0 �7�

�u/�y = 0 at y = � �8�

�l � v/�y = �i at y = � �9�
The effect of condensation �suction� is taken into account by

using the approach suggested by Mickley et al. �32� for flow over
a flat plate with suction and described in Kays, Crawford, and
Weigand �33�. The approach was also used to treat condensation
in tube by Cavallini et al. �34�. The interfacial surface shear stress
is

�i =
1

2
f�vUv

2 �10�

where

f =
	

e	 − 1
fv �11�

Fig. 1 Physical model and coordinates for horizontal
microchannels

Journal of Heat Transfer OCTOBER 2005, Vol. 127 / 1097

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



	 = −
2m

fv�vUv
�12�

m is the condensation flux, fv is the zero transpiration friction
factor obtained by the Churchill �35� equation

fv = 2�� 8

Rev
	12

+
1

�A + B�3/2
1/12

�13�

where

A = �− 4�2 log�� 6.9

Rev
	0.9

+
k

3.71dhv


16

�14�

B = �37530

Rev
	16

�15�

Rev�=�vUvdhv/�v� is taken as the local Reynolds number of vapor
flow, k is the surface roughness here taken as zero, dhv is the
hydraulic diameter of the vapor flow area calculated from the
local condensate surface profile. In evaluating �i, the local value
of Uv was used in Eq. �10� and in Rev in Eqs. �11�–�15�.

Integrating Eqs. �1� and �2� subject to boundary conditions
�7�–�9� across the condensate film in the y direction yields

u =
1

�l
���l − �v�g sin � + �

�

�x
� 1

rc
	
�2�� y

�
	 −

1

2
� y

�
	2


�16�

v =
�i

�l
y −

1

�l
�dPv

dz
	�2�� y

�
	 −

1

2
� y

�
	2
 �17�

For condensation on the sidewalls �0�x�xa, xb�x�xc and
xd�x�xm for square section; xa�x�xb and xc�x�xm for tri-
angular section�, the condensate flow rates per length in the x
direction mx and in the z direction mz are given by

mx =�
0

�

�ludy =
1

3
l
���l − �v�g sin � + �

�

�x
� 1

rc
	
�3 �18�

mz =�
0

�

�lvdy =
�i

2
l
�2 −

1

3
l
�dPv

dz
	�3 �19�

where 
l is the kinematic viscosity of the condensate.
The temperature drop at the vapor-liquid interface �generally

unimportant but could be significant due to high condensation rate
where the film is very thin� may readily be included. Equation
�20� below, for the interface temperature drop �Ti �Ts−Ti�, is
thought to be the most reliable �see Rose �36�� and takes the
“condensation coefficient” as unity

�Ti = �q �20�

where

� =
1

4


�� + 1�
�� − 1�

Ts
�RTs/�
 fg/hfg

2� �21�

with 
=0.665±0.003, q is the local heat flux, � is the ratio of the
principal specific heat capacities, Ts is the saturation temperature
of vapor, R is the specific ideal gas constant, v fg is the difference
between the vapor and liquid specific volumes, and hfg is the
specific enthalpy of evaporation.

The local heat flux q is then given by

q =
1

1 + ��l/�

�l�Ts − Tw�
�

for 0 � x � xa, xb � x � xc,

and xd � x � xm for square section

for xa � x � xb and xc � x � xm for triangular section

�22�

where �l is the thermal conductivity of condensate, Tw is the tem-
perature of channel surface.

Energy conservation gives

q = mhfg �23�

The condensing mass flux m is given by

m = �l� �

�x�0

�

udy +
�

�z�0

�

vdy	 =
�mx

�x
+

�mz

�z
�24�

Substituting Eqs. �18�, �19�, �22�, and �24� into Eq. �23� yields the
differential equation for �

��l − �v�g
3
l

�

�x
��3 sin �� +

�

3
l

�

�x
��3 �

�x
� 1

rc
	
 +

1

2
l

���i�
2�

�z

−
1

3
l

�

�z
��3dPv

dz
	 =

1

�1 + ��l/��
�l�Ts − Tw�

hfg�
�25�

Condensation Towards the Corners. Near the corners of the
channel �xa�x�xb and xc�x�xd for square section; 0�x�xa
and xb�x�xc for triangular section�, orthogonal coordinates
�x ,y� cannot define the condensate film thickness; polar coordi-
nates �r ,�� are therefore used here. The condensate film thickness
� is taken in the r direction ��=rw−ri� as shown in Fig. 1. The
momentum equation for the condensate film at the corners in the
� direction and in the z direction are, respectively, written as

�l� �

�r
�1

r

�

�r
�ru�

 + ��l − �v�g sin � =

1

r

�P

��
�26�

�l�1

r

�

�r
�r

�v
�r
	
 =

�Pl

�z
�27�

where u and v are the velocity components in the �-direction and
in the z direction, respectively, P is given by Eq. �3� and the radius
of the curvature of the condensate surface rc is given by

1

rc
=

ri
2 + 2��ri/���2 − ri��2ri/��2�

�ri
2 + ��ri/���2�3/2

for xa � x � xb and xc � x � xd for square section

for 0 � x � xa and xb � x � xc for triangular section

�28�

The boundary conditions for Eqs. �26� and �27� are

u = v = 0 at r = rw �29�

�u/�r = 0 at r = ri �30�

− �l � v/�r = �i at r = ri �31�
Integrating Eqs. �26� and �27� subject to boundary conditions

�29�–�31� across the condensate film in the r direction yields

u = −
1

3�l
���l − �v�g sin � +

�

r

�

��
� 1

rc
	


��r2 − ri�2 + �rw/ri�3

1 + �rw/ri�2
r + rw
2ri

2 − �rw/ri�
1 + �rw/ri�2

1

r

 �32�

v = − �i
ri

�l
ln� r

rw
	 +

1

4�l
�dPv

dz
	�r2 − 2ri

2 ln� r

rw
	 − rw

2

�33�

The condensate flow rates per length in the x and z directions are
given by
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m� =�
ri

rw

�ludr =
1

3
l
���l − �v�g sin � +

�

r

�

��
� 1

rc
	
� f����

�34�

mz =�
ri

rw

�lvdr =
1


l
�i� f���� +

1

4
l
�dPv

dz
	� fz��� �35�

where

f���� = − rw
2 + rw� −

�2

3
+ �rw −

�

2
	�rw − ��

2 + � rw

rw − �
	3

1 + � rw

rw − �
	2

−
rw

2�rw − ��
�

2 − � rw

rw − �
	

1 + � rw

rw − �
	2 ln� rw

rw − �
	 �36�

f���� = �rw − ���1 +
�rw − ��

�
ln� rw − �

rw
	
 �37�

fz��� = − rw� +
�2

3
+ 2�rw − ��2�1 +

�rw − ��
�

ln� rw − �

rw
	


�38�

Conduction across condensate film gives

�l�1

r

�

�r
�r

�T

�r
	
 = 0

for xa � x � xb

and xc � x � xd for square section

for 0 � x � xa

and xb � x � xc for triangular section

�39�

The boundary conditions for Eq. �39� are

T = Ti at r = ri �40�

T = Tw at r = rw �41�

Integrating Eq. �39� subject to boundary conditions �40� and �41�
using Eq. �20� yields

q =
1

1 +
��l

rw ln�rw/ri�

�l�Ts − Tw�
rw ln�rw/ri�

for xa � x � xb and xc � x � xd for square section

for 0 � x � xa and xb � x � xc for triangular section

�42�

The condensing mass flux m is given by

m = �l� �

rw � �
�

ri

rw

udr +
�

�z�
ri

rw

vdr	 =
1

rw

�m�

��
+

�mz

�z
�43�

Substituting Eqs. �34�, �35�, �42�, and �43� into Eq. �23� yields the
differential equation for � in the corner region

��l − �v�g
3
l

�

rw � �
�� f����sin �� +

�

3
l

�

rw � �
�� f����

�

r � �
� 1

rc
	


+
1


l

�

�z
�� f�����i� +

1

4
l

�

�z
�� fz���

dPv

dz



=
1

1 +
��l

rw ln�rw/�rw−���

�l�Ts − Tw�
hfgrw ln�rw/�rw − ���

�44�

Boundary Conditions on Differential Equations of �. The
differential equations �25� and �44� for � are fourth order in x and
�, respectively, and first order in z. By symmetry the boundary
conditions are

��/�x = 0 at x = 0 �45�

�3�/�x3 = 0 at x = 0 �46�

for square section channel

��/�� = 0 at � = 0 �x = 0� �47�

�3�/��3 = 0 at � = 0 �x = 0� �48�

for triangular section channel and

��/�x = 0 at x = xm �49�

�3�/�x3 = 0 at x = xm �50�
for both square and triangular section channels.

For the case of saturation conditions at the inlet �considered
here� the necessary further boundary condition is

� = 0 at z = 0 �51�

Heat-Transfer Coefficient. At a given location z along the
channel, the local heat-transfer coefficient �x is defined as

�x = q/�Ts − Tw� =
1

1 + ��l/�

�l

�

for 0 � x � xa, xb � x � xc,

and xd � x � xm for square section

for xa � x � xb and xc � x � xm for triangular section

�52a�

�x = q/�Ts − Tw� =
1

1 +
��l

rw ln�rw/�rw−���

�l

rw ln�rw/�rw − ���

for xa � x � xb and xc � x � xd for square section

for 0 � x � xa and xb � x � xc for triangular section

�52b�

The average heat-transfer coefficient �z for the channel at this
location is defined as

�z = qz/�Ts − Tw� �53�

where

qz =
1

xm
��

0

xa

qdx +�
�a

�b

qrwd� +�
xb

xc

qdx +�
�c

�d

qrwd�

+�
xd

xm

qdx	for square channel �54a�
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Fig. 2 Condensate film profiles along channel surface at different distances. Effects of interfacial
shear stress, surface tension and gravity included. R134a, b=1.0 mm, Ts=50 °C, �T=6 K, G
=500 kg/m2 s.
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qz =
1

xm
��

0

�a

qrwd� +�
xa

xb

qdx +�
�b

�c

qrwd�

+�
xc

xm

qdx	for triangular channel �54b�

It is noted that in the present theory one-dimensional pure con-
duction is assumed in the direction of the radial polar coordinate
at the corners. This is not true when the condensate film becomes
thick. However, this will have small effect because where the
error is large the heat transfer is very small.

Computation Scheme. Equations �25� and �44�, subject to the
boundary conditions �45�–�51�, are solved numerically by a finite
difference scheme. For the purposes of computation the unsteady
term �l�� /�t is included on the left side of Eqs. �25� and �44� and
the steady state solution subject to an arbitrary initial �t=0� dis-
tribution of � is obtained. The computation starts at the inlet of
channel with a small step length �z and proceeds in the direction
of vapor flow. For each z, computation is conducted until the
convergence criteria �1−�i,j

* /�i,j��10−4 and �1−�i,j
* /�i,j� /�t*

�0.01 are satisfied, where �i.j
* and �i,j are the old and new values

of � at the grid point �i , j�, and �t* is the dimensionless time step.
The origins O1 and O2 are first selected near the corners when the
condensate film is thin and moves towards the center of channel
cross section as the condensate film becomes thicker. Dependence
of numerical results on grid size along x �or �� and step length �z
were tested. A grid size of 300 grid points along x �or �� and a
value of �z of 1.0 mm were used.

Results and Discussion
Numerical results are given below for condensation of R134a,

R22, and R410A in square and triangular section horizontal mi-
crochannels with side in the range of 0.5–5 mm. The physical
properties of the refrigerants were obtained from REFPROP �37�.
Condensate properties were taken to be uniform at reference tem-
perature

T* =
1

3
Ts +

2

3
Tw �55�

and � and hfg were obtained at Ts.
Computations were conducted including and excluding the “in-

terface resistance” �see Eqs. �20�–�22� and �42��. For the fluid and
conditions used in the present calculation the terms ��l /� in Eq.
�22� and ��l / �rw ln�rw /ri�� in Eq. �42� were found to be much less
than unity and the effect of “interface resistance” is negligible due
to the low refrigerant liquid conductivity as expected. The terms
are retained here since they cause no difficulty in the solution and
could be significant for fluids such as water and ammonia.

Figure 2 shows specimen calculated condensate film profiles
along a channel surface at different distances for R134a with mass
velocity 500 kg/m2 s. Thinning of the film in the vicinity of
change in condensate surface curvature may be seen. This is most
evident near the inlet. It is interesting to note that, for the case of
the square channel, the film remains thin along a significant part
of the upper surface at appreciable distances along the channel. As
will be seen later this is reflected in values of local mean �around
the periphery of the channel� heat-transfer coefficients.

Figure 3 shows the profiles of local film thickness for square
and triangular section horizontal microchannels at different dis-
tances along channel. It is seen that the film is thick in the corners
�x=0.5 mm, 1.5 mm for square channel; x=0 mm, 1.0 mm for
triangular channel�. Towards the inlet the film is seen to be very
thin near the corners, the thin film region moving towards the
centers of the sides at further distances along the channel.

Figure 4 shows the corresponding profiles of local heat-transfer
coefficient along the sides of channel surface. These are essen-
tially reciprocals of the curves in Fig. 3. Low values of the heat-

transfer coefficient are seen at the corners and high values where
the film is very thin. The peaks in the heat-transfer coefficient
become smaller and move towards the centre of the sides at larger
distances along the channel.

Figure 5 shows the dependence of circumferential mean heat-
transfer coefficient �z on distance along the square and triangular
channels when all three mechanisms ��, �, g� of condensate drain-
age are included in the calculation �solid line�, when gravity is
removed �dashed line� and when both surface tension and gravity
are removed �chain dot line�. The enhancing effect of surface
tension over the first 250–350 mm in this case is clearly seen,
approximately doubling the heat-transfer coefficient over that part
of the channel for both square and triangular channels. The effect
of gravity is essentially negligible in this region. The high heat-
transfer coefficient at the inlet results from imposing a tempera-
ture difference between wall and vapor at the onset of condensa-
tion. After the initial high values the coefficient remains almost
constant until, when condensate in the corners occupies a substan-
tial part of the channel �see Fig. 2�, it falls more steeply, particu-
larly for the triangular channel. The importance of gravity at fur-
ther distances along the channel is much more significant for the
square section channel, approximately doubling the heat-transfer
coefficient, due to the thinning of the film on the upper surface
mentioned earlier and seen in Fig. 2. For the triangular channel
gravity continues to have small effect at further distances along
the channel reflecting the condensate profiles seen in Fig. 2.

Figure 6 shows the variation of circumferential mean heat-
transfer coefficient with distance along the channel for different
mass velocities. It is seen that the enhancing effect of surface

Fig. 3 Local film thickness along channel surface at different
distances. Effects of interfacial shear stress, surface tension
and gravity included.
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tension takes place over a longer distance of the channel for
higher mass velocity. It is interesting to note that the values over
the horizontal portions of the curves are almost the same for all
mass velocities, suggesting perhaps that the effect of surface ten-
sion is the dominating mechanism for that part of the channel. It
may also be noted that the heat-transfer coefficient is almost the
same for the square and triangular channels for the surface tension

dominated part of the channel. Figure 7 shows the variation of
vapor mass quality � with distance along the channel for different
mass velocities for the two channel geometries.

Figure 8 shows the effect of channel orientation for a triangular
section horizontal microchannel. It is seen that the orientation has
negligible effect where the surface tension effect dominates.

Fig. 4 Local heat-transfer coefficient along channel surface at
different distances

Fig. 5 Variation of mean „over perimeter of channel… heat-
transfer coefficient with distance

Fig. 6 Variation of mean „over perimeter of channel… heat-
transfer coefficient with distance for several fluid mass
velocities

Fig. 7 Variation of vapor mass quality with distance along
channels and mass velocity
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Figure 9 shows the effect of vapor-to-surface temperature dif-
ference. It is seen that the heat-transfer coefficient is higher and
for a longer distance along the channel for lower vapor-to-surface
temperature difference reflecting lower condensation rates and
correspondingly thinner condensate films.

Figure 10 shows the effect of channel size for a square section
horizontal microchannel. Heat-transfer coefficients are shown for
square channels having side of 0.5, 1.0, 2.0, 3.0, and 5.0 mm. The

enhancing effect of surface tension in the entry part of the channel
is higher for the smaller channels but falls off more rapidly along
the channel. The smaller channels become more rapidly “flooded”
with condensate so that the heat-transfer coefficient further along
the channel is significantly lower than for the larger channels. For
channels with 3 and 5 mm there is little, if any, discernable effect
of surface tension enhancement.

Figure 11 shows the effect of fluid properties on condensation
heat-transfer in square and triangular section horizontal micro-
channels. R410A �50%R32/50%R125� is a near-azeotropic mix-
ture with “glide” temperature difference about 0.2 K and was
treated as a pure fluid. For the conditions used the heat-transfer
coefficients for R134a and R22 are similar while those for R410A
are significantly lower. This may be attributable to the vapor den-
sity, vapor-to-liquid density ratio, and surface tension. The higher
vapor density and lower surface tension of R410A reduce the
interfacial shear stress and surface tension force, respectively.

In order to make detailed comparisons with recent experimental
data �Koyama et al. �23�, Cavallini et al. �25�� it will be necessary
to make calculations with the geometries and conditions used in
these investigations. In particular, modification of the calculation
procedure to accommodate superheat conditions at the inlet will
be necessary. This work is currently in progress and will be re-
ported later. In the meantime it is interesting to make an approxi-
mate comparison with the data of Koyama et al. �23� shown in
Fig. 12 for the tube illustrated in Fig. 13. Focusing on the heat-
transfer coefficient � �diamond symbol�, in the lower part of Fig.
12 it may be seen that � is significantly higher over the first 250
mm than for the remainder of the channel with values in the
approximate range 5 –10 kW/m2 K. These may be compared
with the calculated values for the square and triangular channels
and non-identical conditions shown in Fig. 5. In passing it is noted
in Fig. 12 that the small temperature difference on the vapor side
�TR−Twi, Koyama et al. notation� compared with that on the cool-
ant side �Twi−Ts, Koyama et al. notation� illustrates the problem
of obtaining satisfactory vapor-side data from overall measure-
ments �i.e., without surface temperature measurement� in this type
of experiment.

Fig. 8 Effect of orientation for triangular channel. Solid line:
inverted triangle; dashed line: upright triangle.

Fig. 9 Effect of vapor-to-surface temperature difference

Fig. 10 Effect of channel size for square section channels

Fig. 11 Effects of fluid properties
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Concluding Remarks
A theoretical model for heat transfer during condensation in

square and triangular section horizontal microchannels has been
developed and implemented. The model includes the effects of
interfacial shear stress, gravity and transverse surface tension
force on the motion of the condensate film. Results are presented
for fluids of R134a, R22, and R410A in square and triangular
section channels of side in the range of 0.5–5 mm and for mass
velocities in the range 100 –1300 kg/m2 s. The general behavior
of the flow pattern �spanwise and streamwise profiles of the con-
densate film�, as well as streamwise variation in local mean
�around the channel perimeter� heat-transfer coefficient and vapor
mass quality, are qualitatively in accord with trends expected on
physical grounds. The results demonstrate significant heat-transfer
enhancement by surface tension towards the channel entrance. For
smaller channels the initial enhancement is higher but falls off
after a shorter distance along the channel; higher mass velocities
result in increased length of enhanced heat transfer. For the three
fluids tested heat-transfer coefficients for R22 and R134a are al-
most the same whereas those for R410A are somewhat smaller.
The need to use optimum channel dimensions �cross section and
length� for given applications �fluid, mass velocity, temperature
difference� has been clearly demonstrated.
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Nomenclature
Av � vapor flow area
b � side length of square/triangle channel

dh � hydraulic diameter

dhv � hydraulic diameter of vapor flow area
fv � friction factor of vapor flow

f�, f�, fz � see Eqs. �36�–�38�
g � specific force of gravity

hfg � specific enthalpy of evaporation
m � condensing mass flux

mx � condensate flow rate per length in x direc-
tion, see Eqs. �18� and �34�

mz � condensing flow rate per length in z direc-
tion, see Eqs. �19� and �35�

P � pressure
Pl � liquid pressure
Pv � vapor pressure
q � heat flux
rc � radius of curvature of the condensate sur-

face in the channel cross section, see Fig. 1
r � radial polar coordinate, see Fig.1
ri � distance from origins O1 , O2 to vapor-

liquid interface, see Fig. 1
rw � radius of curvature of channel surface in

the channel cross section, see Fig. 1
R � specific ideal gas constant

Rev � Reynolds number of vapor flow,
�vUvdhv/�v

Si � perimeter of the vapor-liquid interface in
channel cross section

T � temperature
Ts � saturation temperature
Tw � tube wall temperature
T* � see Eq. �55�

�Ti � Ts−Ti
t � time

�t � time step
�t* � �t�l�Ts−Tw� /�lhfg�2

u � condensate velocity along channel surface
in the x direction or � direction, see Fig. 1

v � condensate velocity along channel surface
in the z direction, see Fig. 1

x,y � coordinates along and normal to channel
surface, see Fig. 1

xa, xb, xc, xd � x coordinates at the foot of the perpendicu-
lar from origins O1 and O2, see Fig. 1

xm � x coordinate at the center of the bottom
surface, 1.5b for triangle and 2b for square,
see Fig. 1

X,Y � fixed coordinates defined in Fig. 1
z � coordinate down stream, see Fig. 1

Greek symbols
�x � local heat-transfer coefficient
�z � average heat-transfer coefficient over perim-

eter of channel at location z
� � condensate film thickness, defined in Fig. 1
� � condensate thermal conductivity
� � see Eq. �21�
� � vapor mass quality

 � kinematic viscosity

 � see Eq. �21�
� � density
� � surface tension
�i � interfacial shear stress at vapor-liquid

interface
� � angle, polar co-ordinate, see Fig. 1
	 � see Eq. �12�

	a, 	b, 	c, 	d � angles corresponding to xa, xb, xc, xd, see
Fig. 1

� � angle between the normal of channel sur-
face and Y coordinate, see Fig. 1

Fig. 13 Tube B used by Koyama et el. „Ref. †23‡…. Hydraulic
diameter 0.81 mm.

Fig. 12 Data of Koyama et al. „Ref. †23‡… for condensation of
R134a in tube B „see Fig. 13…. PR is refrigerant pressure, TR is
refrigerant temperature, TRmix is refrigerant temperature at mix-
ing chamber, Twi is inside wall temperature, TS is coolant tem-
perature, q is heat flux, � is heat-transfer coefficient, � is refrig-
erant vapor mass quality.
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Subscripts
i � interface
l � condensate
s � saturation
v � vapor
w � wall
x � local
z � average at the location, z direction
� � � direction
� � � component
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Reduced Pressure Boiling Heat
Transfer in Rectangular
Microchannels With
Interconnected Reentrant Cavities
Boiling flow of deionized water through 227 �m hydraulic diameter microchannels with
7.5 �m wide interconnected reentrant cavities at 47 kPa exit pressure has been investi-
gated. Average two-phase heat transfer coefficients have been obtained over effective
heat fluxes ranging from 28 to 445 W/cm2 and mass fluxes from 41 to 302 kg/m2 s. A
map is developed that divides the data into two regions where the heat transfer mecha-
nisms are nucleation or convective boiling dominant. The map is compared to similar
atmospheric exit pressure data developed in a previous study. A boiling mechanism tran-
sition criterion based on the Reynolds number and the Kandlikar k1 number is
proposed. �DOI: 10.1115/1.2035107�

Keywords: Reduced pressure, Microchannels, Nucleate Boiling, Convective Boiling

1 Introduction
Forced-convection boiling in microchannels is among the most

effective engineering system known for heat removal and might
be the cooling mechanism of choice for many ultra-high heat flux
applications. As a direct result, tremendous research efforts to
unravel the boiling characteristics in microchannels have been un-
dertaken by various research groups �1–7�. Mehendale et al. �8�,
Kandlikar �3�, Bergles et al. �9�, Qu and Mudawar �4�, and Thome
�10� reviewed previous work on boiling flow in small channels
and described both similarities and differences between boiling in
microchannels and in their macroscale counterparts. A relatively
large number of these studies is devoted to boiling characteristics
of atmospheric pressure water. This focus on one atmosphere wa-
ter is perhaps because extensive literature and knowledge exist for
boiling water in conventional-scale channels, the relative ease of
experimenting with water at atmospheric pressure, and the supe-
rior thermal properties of water �e.g., high latent heat of vaporiza-
tion and thermal conductivity�. Since the corresponding tempera-
ture of boiling water at atmospheric conditions �100 °C� is above
maximum acceptable values for many applications �e.g., elec-
tronic chip cooling�, it may be desirable to operate microchannel
boiling systems either with water at a reduced pressure �i.e., lower
boiling temperature� or utilize a coolant with a low vaporization
temperature. Since most commercially available coolants possess
significantly lower latent heat of vaporization than water
��10–20 times lower�, the maximum attainable heat fluxes �i.e.,
the critical heat flux condition� are low compared to the require-
ments imposed by future ultra-high heat flux electronic chips. It
follows that boiling water in microchannels at reduced pressures
is a potentially preferable cooling mode of operation.

System pressure is an important parameter affecting flow boil-
ing, and studies of its effects have been performed for conven-
tional channels. According to the results of Klimenko �11�, Liu
and Winterton �12�, and Steiner and Taborek �13�, heat transfer
coefficients increase with system pressure in conventional chan-
nels. Few studies �14–16� investigating the effects of system pres-

sure on boiling heat transfer coefficients in small channels are
present in the literature. The experimental study of Tran et al. �14�
on circular channels with dh=2.4 mm using R-12 showed a de-
pendency on the system pressure, and it was observed that an
increase in system pressure raised the heat flux-wall superheat
temperature curve, while the slope was not altered. Bao et al. �15�
studied saturated boiling flow inside a circular copper tube with an
inner diameter of 1.95 mm and observed a moderate increase in
the boiling heat transfer coefficient with increasing pressure for
both R-11 and HCFC123 in the saturated boiling region, while
system pressure apparently did not affect the subcooled boiling
region. Huo et al. �16� used 2.01 mm and 4.26 mm tubes with
R-134a as working fluid and showed that heat transfer coefficients
�htp� increased with system pressure without a significant change
in the htp—vapor quality slope. Owhaib et al. �17� used minichan-
nels and demonstrated that boiling heat transfer coefficients are
strongly increased by the system pressure.

A logical extension of conventional-scale knowledge implies
that system pressure can alter boiling heat transfer characteristics
in microscale systems; however, very limited data are available to
test this hypothesis. Thus, the objective of this paper is to study
boiling heat transfer at subatmospheric pressures in microchannels
having re-entrant surface cavities as shown in Fig. 1. Results ob-
tained in this study are compared with atmospheric pressure data
given by Koșar et al. �18�. The effects of system pressure in mi-
crochannels are discussed, and a general map is developed to
distinguish two regions in which nucleation or convective boiling
is the dominant mechanism.

2 Experimental Device, Apparatus, and Procedures
Figure 1�a� depicts the microchannel device consisting of five 1

cm long, 200 �m wide, and 264 �m deep, parallel microchan-
nels, spaced 200 �m apart. On each channel wall, the array of 100
interconnected reentrant cavities �Figs. 1�b� and 1�c�� are 100 �m
apart. An acute angle connects the 7.5 �m mouth to the re-entrant
body �Fig. 1�e�� and ensures its stability �19�. In order to minimize
ambient heat losses, an air gap is formed on the two ends of the
side walls, and an inlet and exit plenum are etched on the thin
silicon substrate ��150 �m�. A heater is deposited on the back
side to deliver the heating power and also to serve as a thermistor
for temperature measurements. A Pyrex substrate seals the device
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from the top and allows flow visualization. Five 20 �m wide ori-
fices are installed �Fig. 1�d�� at the entrance of each channel to
suppress flow instabilities. Flow distributive pillars have been em-
ployed to provide homogeneous distribution of flow in the inlet
�Fig. 1�f��. They are arranged in 2 columns of 12 circular pillars
having a diameter of 100 �m. The transverse pitch between the
pillars is 150 �m and equal to the longitudinal pitch.

2.1 Microchannel Fabrication Method. The Microelectro-
mechanical systems �MEMS� device is micromachined on a pol-
ished double-sided n-type �100� single-crystal silicon wafer em-
ploying techniques adapted from integrated circuit manufacturing.
It is equipped with pressure ports at the inlet and the exit to obtain
accurate static pressures measurements.

A 1 �m thick high-quality oxide film is deposited on both sides
of the silicon wafer to shield the bare wafer surface during pro-
cessing, and serves as an electrical insulator. The heater and the
vias are formed on the back side of the wafer �on top of the
thermistors� by sputtering. A 70 Å thick layer of titanium is ini-
tially deposited to enhance adhesion characteristics and is fol-
lowed by sputtering a 1 �m thick layer of aluminum containing
1% silicon and 4% copper. Subsequent photolithography and con-
comitant wet bench processing create the heater on the back side
of the wafer. A 1 �m thick plasma-enhanced chemical vapor
deposition oxide is deposited to protect the heater during further
processing.

Next, the microchannels are formed on the top side of the wa-
fer. The wafer is taken through a photolithography step and an
reactive ion etching �RIE� oxide removal process to mask certain

areas on the wafer, which are not to be etched during the deep RIE
�DRIE� process. The wafer is consequently etched in a DRIE pro-
cess, and silicon is removed from places not protected by the
photoresist/oxide mask. The DRIE process forms deep vertical
trenches on the silicon wafer with a characteristic scalloped side-
wall possessing a peak-to-peak roughness of �0.3 �m. A profilo-
meter and scanning electron microscope �SEM� are employed to
measure and record various dimensions of the device.

The wafer is flipped and the back side is then processed to
create an inlet, outlet, side air gap, and pressure port taps for the
transducers. A photolithography followed by a buffer oxide etch-
ing �BOE� �6:1� oxide removal process is carried out to create a
pattern mask. The wafer is then etched through in a DRIE process
to create the fluidic ports. Thereafter, electrical contacts/pads are
opened on the back side of the wafer by performing another round
of photolithography and RIE processing. Finally, the processed
wafer is stripped of any remaining resist or oxide layers and an-
odically bonded to a 1 mm thick polished Pyrex �glass� wafer to
form a sealed device. After successful completion of the bonding
process, the processed stack is die-sawed to separate the devices
from the parent wafer.

The MEMS device is packaged by sandwiching it between two
plates. The fluidic seals are forged using miniature “O-rings,”
while the external electrical connections to the heater are achieved
from beneath through spring-loaded pins, which connect the
heater and thermistors to electrical pads residing away from the
main microchannel body.

2.2 Experimental Test Rig. The setup, shown in Fig. 2, con-

Fig. 1 „a… Computer-aided design model of the microchannel device, „b… di-
mensions of reentrant cavities, „c… SEM image of re-entrant cavities, „d… geom-
etry of the inlet region, „e… geometry of the re-entrant cavity, and „f… flow dis-
tributive pillars
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sists of three primary subsystems: The flow loop section, instru-
mentation, and a data acquisition system. The test section houses
the MEMS-based microchannel devices and its fluidic and thermal
packaging module. The microchannel device is mounted on the
fluidic packaging module through O-rings to ensure a complete
leak free system. The fluidic packaging delivers the working fluid
and allows access to the pressure transducers. The heater, which is
fabricated on the device back side, is wired �through electric pads�
to the power supply.

The main flow loop includes the microchannel device, a pulse-
less gear pump, a reservoir which consists of a deaerator unit and
a heating element to control the inlet temperature, flow meter, and
dissolved oxygen meter �for use with water�. The microheater is
connected to a power supply with an adjustable dc current to
provide power to the device. The temperature sensors output sig-
nals are recorded by a data acquisition system. Simultaneously,
the inlet pressure and test section pressure drop are collected, and
the boiling process in the microchannels are recorded by a Phan-
tom V4.2 high-speed camera �maximum frame rate of
90,000 frames/s, and 2 �s exposure time� mounted over a Leica
DMLM microscope. Calibration of the temperature sensors is per-
formed prior to the experiment by placing the device in an oven
and establishing the resistance-temperature curve for each indi-
vidual sensor.

2.3 Experimental Procedures and Data Reduction. The
deionized water flow rate was fixed at the desired value, and ex-
periments were conducted after steady flow conditions were
reached with an exit pressure of 47 kPa and ambient room tem-
perature. First, the electrical resistance of the device was mea-
sured at room temperature. Thereafter, voltage was applied in 1 V
increments to the heater, and the current/voltage data were re-
corded once steady state was reached. In an impeding dryout con-
dition, a meager increase in the applied power causes an abrupt
surge in the wall temperature. Once a large temperature increase
�more than 10 °C� is observed with an incremental increase in the
applied voltage, the power was hastily switched off to prevent
burnout. Flow visualization through the high-speed camera and
microscope complements the measured data. The procedure is re-
peated for different flow rates.

To estimate heat losses, electrical power was applied to the test

section after evacuating the water from the test loop. Once the
temperature of the test section became steady, the temperature
difference between the ambient and test section was recorded with
the corresponding power. The plot of power versus temperature

difference was used to calculate the heat loss �Q̇loss� associated
with each experimental data point. The heat losses are found in
light of power versus temperature difference curve. The average
heat losses for G=41, 83, 166, and 302 kg/m2 s are 25.4, 9.44,
7.5, and 5.5 %, respectively. Heat loss curve for G
=302 kg/m2 s is included in Fig. 3.

Prior to the experiments, an identical device to the one tested
without a flow restrictor has been hydrodynamically tested to ob-
tain pressure drops across microchannels. Pressure drop measure-
ments of the orificeless device have yielded 0.4, 0.9, 1.9, and 3.5
kPa for G=41, 83, 166, and 302 kg/m2 s, respectively.

Data obtained from the voltage, current, and pressure measure-
ments were used to calculate the average single- and two-phase
temperatures, heat transfer coefficients, and critical heat flux
�CHF� conditions. The electrical input power and heater resis-
tance, respectively, were determined with:

Fig. 2 Experimental setup

Fig. 3 Heat losses for G=302 kg/m2 s
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P = V � I �1�
and

R = V/I �2�
The heater electrical resistance-temperature calibration curve is
used for determining the heater temperature. The surface tempera-
ture at the base of the microchannels is then calculated as:

T̄ = T̄heater −
�P − Q̇loss�t

ksAp
�3�

The exit single-phase fluid temperature was calculated with a
calorimetric balance, and the average fluid temperature is ex-
pressed as:

T̄F =
Ti + Te

2
�4�

Assuming that the walls of the channels behaved as one-
dimensional fins, the power input was related to the average heat
transfer coefficient in the channel:

P − Q̇loss = �oAth̄�T̄ − T̄F� �5�

where �o is the overall surface effectiveness of the microchannel
configuration:

�o =
N� fAf + �At − NAf�

At
�6�

where

� f =
tanh�mH�

mH
m =� h̄2�L + W�

ksWL
Af = 2HL �7�

Equations �5�–�7� were employed to evaluate h̄ with an iterative
scheme. Thermal entrance length was evaluated according to the
following equation �20�:

Lth/dh = 0.05 Re Pr �8�

To account for the entrance effects, the average single phase heat
transfer coefficient was multiplied with the following correction
factor:

F =
0.775�24�1 − 1.355� + 1.947�2 − 1.701�3 + 0.953�4 − 0.254�5��1/3�Lth/�dhRe Pr��−1/3

8.235�1 − 2.042� + 3.085�2 − 2.477�3 + 1.058�4 − 0.186�5�
�9�

The nominator of Eq. �9� is an average Nusselt number corre-
lation of hyrodynamically developed and thermally developing
laminar flows for noncircular ducts recommended by Shah and
London �21�, while the denominator is the Nusselt number recom-
mended for thermally and hydrodynamically fully developed
laminar flow �22�.

Under boiling conditions, the length of the microchannels is
divided into two parts: A single-phase �Lsp�, and two-phase �Ltp�
length. Ltp and Lsp are obtained by flow visualization. Again, as-

suming a one-dimensional fin for the channel walls, h̄tp can be
expressed as follows:

h̄tp�T̄tp − Tsat��W + Af� f�L =
�P − Q̇loss��W + Wb�L

Ap
�10�

The inlet and the exit surface temperatures are given as:

Tsi,sp = Ti +
�P − Q̇loss�

h̄As

�11�

Tse,sp = Tsat +
�P − Q̇loss�

h̄As

�12�

The average wall temperature in the single-phase region is the
mean surface temperature:

T̄sp =
Tsi,sp + Tse,sp

2
�13�

With T̄sp known, T̄tp is obtained from a weighted average of the
single and two-phase regions wall temperatures:

T̄tp =
T̄L − T̄spLsp

Ltp
�14�

Finally, the exit quality can be calculated with the known mass
flow rate and net power supplied to the device as:

xe =
�P − Q̇loss� − ṁcp�Tsat − Ti�

ṁhFG

�15�

Uncertainties in the measured values were obtained from the
manufacturer’s specification sheets, while the uncertainties of the
derived parameters are calculated using the method developed by
Kline and McClintock �23�. Uncertainty in the two-phase convec-
tive heat transfer coefficient is estimated to be ±9%.

3 Results and Discussion

3.1 Boiling Curve. Figure 4 depicts the heat flux as a func-
tion of the average surface temperature for four mass fluxes. Dur-

ing single-phase flow �T̄�80 °C� the curves exhibit no change in
the heat flux-temperature slope for each mass flux. Once boiling
begins, an abrupt change occurs in the slope at temperatures
nearly 80 °C and nucleate bubbles are visualized as shown in Fig.
5 �The saturation temperature at 47 kPa is 79.8 °C�. Initially, the
surface temperature remains relatively constant as the heat flux is
increased for G=83, 166, and 302 kg/m2 s. At sufficiently high
heat fluxes, the temperature increases with heat flux, however, a

Fig. 4 Boiling curves for water at 47 kPa „qeff� versus T̄…
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steeper slope in comparison to single-phase flow characterizes this
region. For G=41 kg/m2 s, this transition is not observed, and the
curve maintains a constant slope �higher than single phase� while
boiling is present until the critical heat flux condition is reached.

3.2 Two-Phase Heat Transfer Coefficients. Figure 6 shows
two-phase heat transfer coefficients as a function of heat flux. For
G=41 kg/m2 s, there is initially a sharp increase in the two-phase
heat transfer coefficient which is followed by a more moderate
increase; for q��46 W/cm2, the heat transfer coefficient drops
indicating the CHF condition as a result of complete dryout �xe

�1�. The heat transfer coefficients for G=41 kg/m2s and G
=83 kg/m2s appear to follow the same trend qualitatively as well
as quantitatively for heat fluxes 25 to 36 W/cm2. For G
=41 kg/m2 s at higher heat fluxes htp decreases due to the im-
pending CHF condition. The heat transfer coefficient for G
=166 kg/m2 s and q��96 W/cm2 declines with heat flux, while
it increases at lower heat fluxes �q��87 W/cm2�. For G
=302 kg/m2 s, the heat transfer coefficient initially increases and
then monotonically decreases throughout the boiling flow until
CHF condition is reached.

Figure 7 shows the variation in two-phase heat transfer coeffi-
cients with exit quality for different mass fluxes. For G
=41 kg/m2 s, a slight increase in htp with exit quality is notable.
With the dryout condition looming, heat transfer coefficient tends
to decrease. For G=83 kg/m2 s, an increase in heat transfer coef-
ficient is observed at low qualities �xe�0.3�, whereas for higher
qualities, htp gradually decreases with xe. A similar trend is ob-
served for G=166 kg/m2 s. At G=302 kg/m2 s after a peak is
reached in the heat transfer coefficient at a quality of about 18%,
htp monotonically decreases with exit quality. An interesting fea-
ture of Fig. 7 is that the data for xe�0.35 and G�83 kg/m2 s
follow the same trend, and the magnitude of heat transfer coeffi-
cients is comparable for all mass fluxes.

3.3 Comparison of Atmospheric and Subatmospheric
Pressure Two-Phase Heat Transfer Data. A comparison of the
two-phase heat transfer coefficients obtained in the current study
with the atmospheric exit pressure data given in �18,24� are shown
in Fig. 8. For the most part, qualitatively the data for the atmo-
spheric and reduced pressure follow the same trend, whereas
quantitatively htp is lower for the reduced pressure, which is con-
sistent with conventional size channel behavior. The two-phase
heat transfer coefficients for G=41 kg/m2 s show no notable dif-
ferences from the atmospheric pressure data. However, the atmo-
spheric data are considerably scattered due to large flow oscilla-
tions, whereas the subatmospheric flow is steady. Currently, the
reason is not fully understood. Possibly the higher surface tension
at the lower saturation temperature might assist in stabilizing the
flow. For G=83 kg/m2 s at subatmospheric conditions, a zone in
which heat transfer coefficients decrease with heat flux is appar-
ent, whereas at atmospheric pressures the heat transfer coefficient
significantly decreases with heat flux only at impending dryout
conditions. The data for the zone in which the heat transfer coef-
ficient increases with the heat flux is approximately similar in
magnitude to the atmospheric pressure data, and deviations start to
occur thereafter. The profiles for G=166 kg/m2 s and
302 kg/m2 s are similar for both exit pressures; however, they are
greater at atmospheric exit pressure by an average of �20%.

Two-phase heat transfer coefficients as a function of exit quality
are shown in Fig. 9 for both reduced and atmospheric exit pres-
sures. The profiles have similar trends for both pressures. For G
=83, 166 kg/m2 s, and 302 kg/m2 s, heat transfer coefficients are
larger at the atmospheric exit pressure, which is in agreement with
studies performed in minichannels �14–16�, while the heat trans-
fer coefficients are similar in magnitude for both atmospheric and
reduced pressures at G=41 kg/m2 s.

3.4 Flow Boiling Mechanisms. Conventional channel flow
boiling mechanisms are closely connected with distinctive depen-
dency of the heat transfer coefficient on mass flux, exit quality,
heat flux, and subcooled conditions. Two-phase heat transfer co-
efficients during nucleate boiling typically increase with heat flux
and are weakly dependent on liquid subcooling, mass flux, and
mass quality. Boiling heat transfer coefficients during convective
boiling, on the other hand, increase with quality and mass flux but
are weakly dependent on heat flux. Some studies on microchannel
boiling �e.g., reference �4�� have used this heat transfer depen-
dency on the thermohydraulic conditions to identify the predomi-
nant flow boiling mechanisms. Although it is not fully clear
whether the heat transfer mechanisms in microchannels closely
follow the same htp trends as conventional channel do, it is useful
to distinguish the conditions corresponding to nucleate and con-
vective boiling based on criteria adopted from conventional scale

Fig. 5 Nucleation from reentrant cavities „q�=77.4 W/cm2, G
=166 kg/m2 s…

Fig. 6 Two-phase heat transfer coefficients for water at 47 kPa
„htp versus q�…

Fig. 7 Two-phase heat transfer coefficients for water at 47 kPa
„htp versus xe…:„a… G=41 kg/m2 s, „b… G=83 kg/m2 s, „c… G
=166 kg/m2 s, and „d… G=302 kg/m2 s
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channels. In accordance to this, Koșar et al. �18� identified both
mechanisms in microchannel flow boiling and developed a heat
transfer mechanism map separating nucleate and convective
dominant regions with a straight line, which relates Boiling num-
ber to Reynolds number.

In the present study, the Reynolds number range is between 21
to 167 and the Bo number is between 7.5�10−4 to 5.2�10−3.
According to reference �18�, the experimental data should partly
lie within the nucleate boiling regime and partly within the con-
vective boiling regime �Recr=163.59−2.73�104Bo�. The data
provided in Fig. 6 can be classified into two regions of heat flux
dependency: �i� Increasing htp with heat flux, and �ii� decreasing
htp with heat flux. For low mass flux �G=41 kg/m2 s�, a consis-
tent trend of increasing htp with heat flux is notable, while the heat
transfer coefficient for the high mass flux �G=302 kg/m2 s�
monotonically declines with q�. For moderate mass fluxes �G
=83 and 166 kg/m2 s�, the heat transfer coefficients initially in-
crease with q�, and then continuously decline. The increasing heat
transfer coefficients with heat flux at low mass flux and all heat
fluxes �up to CHF� and moderate mass fluxes �G=83 and
166 kg/m2 s� under low heat fluxes �q��51 W/cm2 for G
=83 kg/m2 s, q��115 W/cm2 for G=166 kg/m2 s� are clearly a
feature of nucleate boiling mechanism. On the other hand, the
dependency of the heat transfer coefficients on heat flux at mod-
erate mass fluxes �G=83 and 166 kg/m2s� under high heat fluxes
�q��115 W/cm2� and high mass flux �G=302 kg/m2s� under all
heat fluxes suggests convective boiling dominance.

The heat transfer coefficients for all heat fluxes at low mass
fluxes and moderate mass fluxes under low heat fluxes do not

seem to be strongly dependent on the mass flux. However, a sig-
nificant increase is observed when the mass flux is increased to
302 kg/m2 s. This supports nucleate boiling dominance at low
mass fluxes and convective boiling dominance at high mass
fluxes.

From Fig. 7, it is evident that at moderate mass fluxes with high
qualities and high mass fluxes for all mass qualities the heat trans-
fer coefficients decrease with xe. As noted by Qu and Mudawar
�4�, this is a unique characteristic of microchannel convective flow
boiling. It should be noted that the weak dependency of the heat
transfer coefficient on mass flux for xe�0.35 does not provide
supporting evidence for the convective boiling mechanism.

From the aforementioned discussion, it can be concluded that as
mass flux increases the boiling mechanism shifts from nucleate to
convective dominant. Furthermore, convective boiling tends to
predominate as heat flux increases. Since the Reynolds and Boil-
ing numbers were previously used in reference �18� to determine
the boiling mechanisms, a heat transfer mechanism map based on
these parameters is shown in Fig. 10. Both the present subatmo-
spheric data and previously obtained data at atmospheric pressure
are shown. The identification of the boiling mechanism of each
data point was based on the observed trends of htp in Figs. 6 and
7. Emphasis is given to points where the heat transfer coefficient
stops increasing and a continuous or a sudden decrease begins.
The data for low mass flux �G=41 kg/m2s� are considered to be
included in the nucleate dominant region except the last two data
points, which apparently correspond to dryout conditions. The
data for the moderate mass fluxes �G=83 and 166 kg/m2 s� at low
heat flux �q��51 W/cm2 and q��96 W/cm2, respectively� are

Fig. 8 Comparison of heat transfer coefficients with heat flux at reduced and atmospheric exit pressures: „a… G
=41 kg/m2 s, „b… G=83 kg/m2 s, „c… G=166 kg/m2 s, and „d… G=302 kg/m2 s
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included in the nucleate boiling region, whereas all the remaining
data �the remaining data of G=83 and 166 kg/m2 s, and all the
data of G=302 kg/m2 s� are considered to be convective boiling
dominant.

As can clearly be seen in Fig. 10, data from both pressure levels
have similar trends. Low Bo and low Re correspond to the nucle-
ate boiling dominant mechanism, while high Bo and high Re are
associated with convective boiling. Like the heat transfer mecha-
nism map in reference �18�, the transition Reynolds number �tran-
sition from nucleate to convective boiling� can be linearly corre-
lated to the Boiling number.

At reduced pressures flow boiling mechanisms transition at

lower Boiling numbers than at atmospheric pressure, which im-
plies that the Bo number alone is insufficient to provide a gener-
alized correlation for the two distinct exit pressures. In an attempt
to find a commonality between the two sets of data �atmospheric
and reduced pressure�, the k1 number suggested by Kandlikar �7�
k1=Bo2��L /�G� is used instead of the Boiling number, and the
results are shown in Fig. 11. The k1 number captures more prop-
erly the transition Reynolds number than the Bo number. The
transition boundary between the nucleate and convective boiling
dominated zones can be expressed with:

Recr = 119 − 2.2 � 103k1 �16�

Fig. 9 Comparison of heat transfer coefficients with exit quality at reduced and atmospheric exit pressures

Fig. 10 Comparison of heat transfer mechanism reduced and atmospheric
exit pressure data
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3.5 Critical Heat Flux Conditions. The dependence of the
heat flux at CHF conditions on the mass velocity and exit quality
are shown in Figs. 12 and 13, respectively, along with the data
obtained at atmospheric pressures in reference �18�. The exit pres-
sure appears to have no effect on the dependence of CHF on the
mass velocity. The increase of critical heat flux with mass velocity
in conventional scale apparatus is well documented in the litera-
ture and it appears that boiling flow in microchannels exhibits
similar dependency. Although it seems that at reduced pressure
CHF conditions occur at slightly higher exit quality the data are
not sufficient to make any firm conclusions.

4 Conclusions
In this study, boiling heat transfer experiments have been con-

ducted in microchannels with interconnected re-entrant cavities at
a reduced pressure �pe=47 kPa�. Governing heat transfer mecha-
nisms are identified and specified for different operating condi-
tions. Two-phase heat transfer coefficients have been compared to

results obtained from tests at an atmospheric exit pressure. More-
over, a heat transfer mechanism map containing the data of both
atmospheric and reduced exit pressure has been developed based
on Re and the dimensionless parameter k1. The main conclusions
drawn from this study are:

• Heat transfer coefficients increase with exit pressure at the
same exit quality for moderate and high mass fluxes. This is
in agreement with findings in the literature for conventional
and minichannels.

• For the most part, heat transfer coefficients displayed similar
qualitative trends at reduced and atmospheric pressures.

• Depending on the mass flux and heat flux, both nucleate and
convective dominant boiling mechanisms have been de-
tected. A transition between nucleate and convective boiling
was quantified. For subatmospheric pressure data, nucleate
boiling is dominant for low Re and Bo similar to atmo-
spheric pressure data. However, the transition from the
nucleate to convective dominant boiling heat transfer
mechanism occurs at a lower Re and Bo than at atmospheric
pressure.

• A general heat transfer mechanism map based on the dimen-
sionless parameter k1 and the Reynolds number was gener-
ated, which provides a better prediction of the reduced and
atmospheric pressure data than only the Boiling and Rey-
nolds number plot.
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Nomenclature
Af 	 fin surface area, m2

As 	 surface area, m2

Ap 	 planform area, m2

At 	 total heat transfer area, m2

Bo 	 boiling number, qch� /GhFG
cp 	 specific heat at constant pressure, kJ/kg K
dh 	 hydraulic diameter, m
F 	 heat transfer coefficient multiplier
G 	 mass flux, kg/m2 s
h 	 heat transfer coefficient, W/m2K

h̄ 	 average single-phase heat transfer coefficient,
W/m2K

hFG 	 latent heat of vaporization, kJ/kg
H 	 channel height, m
I 	 electrical current, Amp
k 	 thermal conductivity, W/m K
kI 	 dimensionless parameter, �q� /GhFG�2�L /�G

L 	 microchannel length, m
Lth 	 thermal enterance length, m
m 	 defined in Eq. �7�
m 	 mass flow rate, kg/s
N 	 number of microchannels
P 	 power, W
q� 	 heat flux, W/cm2

Fig. 11 Heat transfer mechanism map with reduced and atmo-
spheric exit pressure data

Fig. 12 qCHF� dependence on G

Fig. 13 qCHF� dependence on xe
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Q̇ 	 volumetric flow rate, ml/min
R 	 electrical resistance, 


Re 	 Reynolds number, Gdh /�L
T 	 temperature, °C

T̄ 	 average temperature, °C
t 	 thickness between the heater and microchannel

base, m
V 	 voltage, V
W 	 michrochannel width, m

Wb 	 fin width, m
x 	 mass quality

Greek Symbols
� 	 aspect ratio
� 	 fin efficiency
� 	 viscosity, kg/ms
� 	 density, m3/s

Subscripts
amb 	 ambient
CHF 	 critical heat flux condition

cr 	 critical
e 	 exit

eff 	 effective
exp 	 experimental

f 	 fin
F 	 fluid
G 	 gas
i 	 inlet

LO 	 liquid only
o 	 overall
s 	 surface

sat 	 saturation
se 	 surface at the exit
si 	 surface at the inlet
sp 	 single-phase
tp 	 two-phase

References
�1� Jiang, L., Wong, M., and Zohar, Y., 2001, “Forced Convection Boiling in

Microchannel Heat Sink,” J. Microelectromech. Syst., 10�1�, pp. 80–87.
�2� Kandlikar, S. G., 2002, “Fundamental Issues Related to Flow Boiling in Min-

ichannels and Microchannels,” Exp. Therm. Fluid Sci., 26, pp. 389–407.
�3� Kandlikar, S. G., 2002, “Two-Phase Flow Patterns, Pressure Drop, and Heat

Transfer during Boiling in Minichannels Flow Passages of Compact Evapora-
tors,” Heat Transfer Eng., 23�1�, pp. 5–23.

�4� Qu, W., and Mudawar, I., 2003, “Flow Boiling Heat Transfer in Two-Phase
Microchannel Heat Sink. I: Experimental Investigation and Assessment of
Correlation Methods,” Int. J. Heat Mass Transfer, 46�15�, pp. 2755–2771.

�5� Bowers, M. B., and Mudawar, I., 1994, “High Flux Boiling in Low Flow Rate,
Low Pressure Drop Minichannel and Microchannel Heat Sinks,” Int. J. Heat
Mass Transfer, 37�2�, pp. 321–334.

�6� Steinke, M. E., and Kandlikar, S. G., 2004, “An Experimental Investigation of
Flow Boiling Characteristics of Water in Parallel Microchannels,” ASME J.
Heat Transfer, 126�4�, pp. 518–526.

�7� Kandlikar, S. G., 2004, “Heat Transfer Mechanisms during Flow Boiling in
Microchannels,” ASME J. Heat Transfer, 126�1�, pp. 8–16.

�8� Mehendale, S. S., Jacobi, A. M., and Shah, R. K., 2000, “Fluid Flow and Heat
Transfer at Micro- and Mesoscales with Application to Heat Exchanger De-
sign,” Appl. Mech. Rev., 53�7�, pp.175–193.

�9� Bergles, A. E., Lienhard, J. H., Kendall, G. E., and Griffith, P., 2003, “Boiling
and Evaporation in Small Diameter Channels,” Heat Transfer Eng., 24�1�, pp.
18–40.

�10� Thome, J. R., 2004, “Boiling in Microchannels: A Review of Experiment and
Theory,” Int. J. Heat Fluid Flow, 25, pp. 128–139.

�11� Klimenko, V. V., 1990, “A Generalized Correlation for Two-Phase Forced
Flow Heat Transfer,” Int. J. Heat Mass Transfer, 31, pp. 541–552.

�12� Liu, Z., and Winterton, R. H. S., 1991, “A General Correlation for Saturated
and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool
Boiling Equation,” Int. J. Heat Mass Transfer, 34, pp. 2759–2766.

�13� Steiner, D., and Taborek, J., 1992, “Flow Boiling Heat Transfer in Vertical
Tubes Correlated by Asymptotic Model,” Heat Transfer Eng., 13, pp. 43–69.

�14� Tran, T. N., Wambsganns, M. W., and France, D. M., 1996, “Small Circular-
and Rectangular-Channel Boiling with Two Refrigerants,” Int. J. Multiphase
Flow, 22�3�, pp. 485–498.

�15� Bao, Z. Y., Fletcher, D. F., and Haynes, B. S., 2000, “Flow Boiling Heat
Transfer of Freon R11 and HCFC123 in Narrow Passages,” Int. J. Heat Mass
Transfer, 43, pp. 3347–3358.

�16� Huo, X., Chen, L., Tian, Y. S., and Karayiannis, T. G., 2004, “Flow Boiling
and Flow Regimes in Small Diameter Tubes,” Appl. Therm. Eng., 24, pp.
1225–1239.

�17� Owhaib, W., Martín-Callizo, C., and Palm, B., 2004, “Evaporative Heat Trans-
fer in Vertical Circular Microchannels,” Appl. Therm. Eng., 24, pp. 1241–
1253.

�18� Koșar, A., Kuo, C. J., and Peles, Y., 2005,“Boiling Heat Transfer in Rectan-
gular Microchannels with Reentrant Cavities,” Int. J. Heat Mass Transfer, 48,
pp. 3615–3627.

�19� Webb, R. L., 1981, “The Evolution of Enhanced Surface Geometries for
Nucleate Boiling,” Heat Transfer Eng., 2�3–4�, pp. 46–69.

�20� Incropera, F. P. and DeWitt, D. P., 1996, “Introduction to Heat Transfer,”
Wiley, NY, pp. 393–394.

�21� Shah, R. K., and London, A. L., 1978, “Laminar Flow Forced Convection in
Ducts,” Supplement 1 to Advances in Heat Transfer, Academic, NY.

�22� Shah, R. K. and Sekuli, D. P., 2003, Heat Exchanger Design, Wiley, NY, pp.
477–479.

�23� Kline, S., F. A., and McClintock, F. A., 1953, “Describing Uncertainties in
Single-Sample Experiments,” Mech. Eng. �Am. Soc. Mech. Eng.�, 75�1�, pp.
3–8.

�24� Jensen, M. K., Peles, Y., Srikar, V. T., Koșar, A., and Kuo, C. J., “Enhanced
Boiling Heat Transfer in Second Generation Microchannels. Part A. Methods
and Preliminary Data,” Proc. 3rd International Conference on Microchannels
and Minichannels, ICMM2005-75195.

1114 / Vol. 127, OCTOBER 2005 Transactions of the ASME

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Hervé Thierry Kamdem
Tagne

Dominique Doermann
Baillis1

e-mail: dominique.baillis@insa-lyon.fr

Centre de Thermique de Lyon (CETHIL)—UMR
5008 CNRS INSA de Lyon/Université Claude

Bernard—Lyon 1 Bât. Sadi Carnot,
69621 Villeurbanne, France

Radiative Heat Transfer Using
Isotropic Scaling Approximation:
Application to Fibrous Medium
The applicability of the isotropic scaling approximation to heat transfer analysis in
fibrous medium is discussed. The isotropic scaling model allows the transformation of an
anisotropic scattering problem to an isotropic one. The scaled parameters are derived for
general anisotropic scattering and for radiative properties dependent of the incidence
radiation. Three different isotropic scaling approaches are considered: Directional iso-
tropic scaling, mean isotropic scaling, and P1 isotropic scaling; corresponding to isotro-
pic scaling parameters function of incident radiation, arithmetic mean over all incident
direction of radiative properties, and mean on weighted radiative properties, respectively.
The discrete ordinate method is used to solve the radiative transfer equation through
fibrous medium. The fibers in the medium are randomly oriented either in space or
parallel to the boundaries. Numerical results presented for a pure radiation problem
show good accuracy on radiative heat flux between the exact solution and solution
obtained with both P1 and directional isotropic scaling while using mean isotropic scal-
ing is unsuitable. Using isotropic scaling approximation to model radiative heat transfer
is faster than the exact solution and required few quadratures to converge.
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Introduction
Radiative heat transfer through semitransparent media has at-

tracted a great deal of interest in several areas, such as thermal
insulation, manufacturing and processing materials �1,2�. The ra-
diative behavior of semitransparent media is predicted by solving
the radiative transfer equation �RTE�. The radiative properties re-
quired to solve the RTE are the absorption, the extinction, the
scattering coefficients, and the scattering phase function. These
properties can be obtained either from analytical models, such as
Mie theory or from an inverse method based upon experimental
data �3–7�.

The exact phase function, such as obtained from Mie theory,
may undergo strong angular oscillations and high forward scatter-
ing peak at any given single wavelength. These two phenomena
enormously complicate the radiative transfer analysis. Thus, dif-
ferent approximate phase functions have been proposed such as
the development of the phase function in a series of Legendre
polynomials �8�, the Henyey–Greenstein function, �9,10� or iso-
tropic function �10–12�. For isotropic phase function, scaling is
required to transform an anisotropic scattering problem to an
equivalent isotropic problem.

The isotropic scaled parameters, such as optical depth and al-
bedo, can be usually derived from three different approaches: �i�
The delta approximation, �ii� the scaling group of the radiative
transfer equation, and �iii� the P1 spherical harmonic approach
�13–15�.

�i� The delta approximation replaces the phase function by
the sum of a Dirac-delta function and an isotropic func-
tion. The isotropic scaling parameters are then obtained by

substituting the delta approximate phase function into the
RTE �13,14�.

�ii� McKellar and Box �14� derived the conditions under
which two solutions to the RTE for two distinct sets of
physical conditions will be equivalent. Such transforma-
tion forms the scaling group of the radiative transfer equa-
tion. In their analysis, the original and the scaled phase
functions are expanded in a series of Legendre polynomi-
als and they found a relation between the moments of
these two functions. From this approach, the difference of
the number of terms in Legendre expansion between the
original and the scaled functions must be limited to one.
Thus, the isotropic scattering phase function will be ob-
tained only from a linear anisotropic phase function �15�.

�iii� In the study of Lee and Buckius �15�, the isotropic scaling
is obtained from the first order of the spherical harmonic
method �P1� of solving the one-dimensional RTE. These
authors normalized the RTE and used the P1 approxima-
tion to derive the isotropic scaled parameters albedo and
optical depth. But this approach requires that the radiative
properties are independent of the incident direction.

Earlier analysis of radiative transfer using a scaling model usu-
ally considered spherical homogeneous particles with a phase
function easily expanded in a series of Legendre polynomials
�13–18�. Very few works have been done for nonspherical par-
ticles such as fibers. This is probably due to the difficulty to cor-
rectly determine the phase function moments for these particles
and also because certain anisotropic simplifications introduced for
a medium with spherical particles are not as appropriate when the
medium is made up of cylindrical fibers �19�. For fibrous ran-
domly oriented in space, Houston �20� assumed that the Mie–
Kerker phase function is constant in a set of scattering angle in-
tervals. According to him, to accurately account for the forward
peak, the Legendre expansion phase function requires at least 20
terms in the far infrared and 60 terms in the near infrared. To
avoid great computer time consuming, he used a delta-M scaling
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approach with 2�M �5 for radiative analysis. Recently, Yuen et
al. �21� used the Delta-Eddington function to reduce the high an-
isotropy scattering of randomly oriented in space fibrous medium
to a linear anisotropy scattering.

As a result from the above discussion, the three approaches
�i,ii,iii� present limitations to derive the isotropic scaling param-
eters. The delta approximation can be used only for forward scat-
tering, the scaling group of the radiative transfer equation is lim-
ited to linear anisotropic scattering, and the P1 scaling must be
adapted for cases where the radiative properties depend on the
incidence direction. It is also important to note that in most of the
previous works using isotropic scaling for radiative analysis, com-
parisons are made between the isotropic scaling solution and the
solution obtained with the Legendre expansion approximate func-
tion of spherical particles. The question arises how accurate the
result from the exact solution for nonspherical particles would be
if using the isotropic scaling. Furthermore, how would the isotro-
pic scaled parameters for non-randomly oriented particles in space
be determined?

The objectives of this study are twofold. One is to present a
methodology to transform an anisotropic scattering problem to
isotropic scattering for general anisotropic scattering and for ra-
diative properties depending or not of the incidence direction such
as for fibrous medium. The other objective is to examine the ac-
curacy of the isotropic scaling when using the discrete ordinate
method to solve the RTE in one-dimensional fibrous medium.
This is achieved by a systematic analysis of the radiative heat flux
predicted by the isotropic scaling method and the exact solution
for various quadratures. The fibers in the medium are assumed to
be circular, infinitely long, and randomly oriented either in space
or parallel to the diffuse boundaries.

Models and Analysis
In this paper, the one-dimensional heat transfer is considered.

The medium is assumed to be gray and in radiative equilibrium.
The boundary surfaces are black; the top and the bottom walls are
maintained respectively at temperatures T1 and T2. The governing
equations for radiative transfer in absorbing/emitting/scattering
medium are the radiative transfer and the energy conservative
equations. By simultaneously solving these two-coupled equa-
tions, the temperature distribution and the heat flux in the medium
can be obtained.

Radiative Transfer and Energy Equations. The RTE in one-
dimensional gray medium is �6�

�
�I�y,��

�y
= − �e���I�y,�� + ��e��� − �s����Ib

+
1

4�
�

4�

�s����P���,��I�y,���d�� �1�

�e−�s=�a is the absorption coefficient, P is the scattering phase
function normalized according to the relation

1

4�
�

4�

P��,��d�s = 1 �2�

with d�s=sin �d�d� the scattering solid angle. The angles �
and � are regarded as the spherical polar angles of the scattered
radiation relative to the incident direction, and � the azimuthal
angle on the plane normal to the incident direction. The scattering
angle � between in-coming direction � and scattering direction
�� is

cos � = ��� + ��1 − �2��1 − ��2�cos�� − ��� �3�

The radiative energy conservation equation is

dq

dy
=�

4�

��e��� − �s�����4�Ib − I�y,���d� �4�

The radiative heat flux q is defined as

q =�
4�

I�y,���d� �5�

Isotropic Scaling Problems. Isotropic scaling reduces an an-
isotropic scattering problem to an isotropic scattering problem. In
this paper, three different models are proposed to derive the iso-
tropic scaling parameters and will be compared with each other:
The directional, the P1, and the mean isotropic scaling models.

The Directional Isotropic Scaling Model. In this section, we
extend the scaling group of the RTE �14� in order to determine the
isotropic scaled parameters for general anisotropic scattering and
for radiative properties dependent or not on the incidence direc-
tion. The scaling group of the radiative transfer equation is based
on the transformation of a problem of optical thickness 	, albedo

, and anisotropic phase function P to a problem of optical thick-
ness 	*, albedo 
*, and anisotropic phase function P*. This con-
cept is well explained by McKellar and Box �14�. The RTE Eq.
�1� is rewritten in a more convenient form

�
�I�	,��

�	
= �1 − 
����Ib +

1

4�
�

4�

K��e,�s,��,��I�	,���d��

�6�

	=�e���y is the optical depth, 
���=�s��� /�e��� is the albedo
and K is the Kernel function defined as

K��e,�s,��,�� = �s����P���,��/�e��� − 4���� − ��� �7�

For a scaled optical depth 	*, albedo 
* and phase function P*, the
radiative transfer equation is

�
�I�	*,��

�	* = �1 − 
*����Ib

+
1

4�
�

4�

K*��e
*,�s

*,��,��I�	*,���d�� �8�

with

K*��e
*,�s

*,��,�� = �s
*����P*���,��/�e

*��� − 4���� − ���
�9�

To scale a problem based on 	, �e, �s, 
, P to a problem based on
	*, �e

*, �s
*, 
*, P* the following transformation is used

	 = �	* �10�

�=���� is the scaling transformation parameter. Putting Eq. �10�
into Eq. �6� and comparing to Eq. �8� leads to


*��� = �
��� + 1 − � �11�

K��e,�s,��,�� = K*��e
*,�s

*,��,��/� �12�

Using Eq. �7� and Eq. �9�, Equation �12� is rewritten as

�s
*����P*���,��/�e

*��� = ��s����P���,��/�e���

+ 4��1 − ������ − �� �13�

In order to determine the scaled parameters 	*, �e
*, �s

*, 
*, and
P* we suggest to form a system of �N+1� equations based on the
evaluation of the N first moment of Eq. �13�. The order N is the
number of terms in the scaled function P*. In the case of isotropic
scaling transformation P*�� ,��=1 and N=1. The evaluation of
the zeroth and first moments of Eq. �13� by applying the operators
1 /4��4� . . .d�s and 1/4��4� . . . cos �d�s gives, respectively,
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1

4�
�

4�

�s
*����

�e
*���

d�s =
1

4�
�

4�

��s����P���,��
�e���

d�s

+�
4�

�1 − ����� − ���d�s �14�

1

4�
�

4�

�s
*����

�e
*���

cos �d�s =
1

4�
�

4�

��s����
�e���

P���,��cos �d�s

+�
4�

�1 − ������ − ��cos �d�s

�15�

Using the following equations

�4����� − �� = 2��1 − cos ��

�
−1

1

��
 − cos ��Q�cos ��d cos � = Q�
� 	 �16�

the bias scattering factor �22� of the exact phase function P

g���� =
1

4�
�

4�

P���,��cos �d�s �17�

and the normalized scattering phase function condition Eq. �2�,
Eqs. �14� and �15� are rewritten as

�
�s

*����
�e

*���
= �

�s����
�e���

+ 1 − �

�
�s����
�e���

g���� + 1 − � = 0 	 �18�

To satisfy Eq. �11�, the case ��=� is considered and solving the
system �18� yield

� = 1/�1 − 
���g���� �19�


*��� = 
����1 − g����/�1 − 
���g���� �20�

From Eq. �10�, we deduce

�e
*��� = �1 − 
���g�����e��� �21�

Thus, Eqs. �20� and �21� are the isotropic scaling parameters ap-
plicable for general anisotropic scattering and for situations where
the radiative properties depend or not on the incidence direction.

The P1 Isotropic Scaling Model. Since the P1 isotropic scaling
parameters for randomly oriented particles in space have been
developed by Lee and Buckius �15�, we focus our analysis on the
extension of the model to randomly oriented particles in plane.
The P1 approximation ordinary differential equation for heat flux
in a one-dimensional medium with radiative properties dependent
of the incidence direction is

d2q

dy2 − 3��e,P1 − 
�sg�P1��̄aq = 4��̄a
dIb

dy
�22�

where

�̄a =�
0

1

�a���d� �23�

�e,P1 = 3�
0

1

�e����2d� �24�


�sg�P1 = 3�
0

1

�s���g����2d� �25�

As it can be deduced from the Dombrovsky study �23�, randomly
oriented particles in plane can be assumed as medium with
equivalent radiative properties independent of the incident radia-
tion. Thus, the equivalent absorption, extinction and scattering
coefficients are defined, respectively, as

�a,eq = �̄a �26�

�e,eq = �e,P1 �27�

�s,eq = �e,eq − �a,eq �28�

With the previous equations, Eq. �22� have the same differential
equation as for particles randomly oriented in space. Following
Lee and Buckius �15� analysis, the P1 isotropic scaling parameters
are


P1
* = 
eq�1 − geq�/�1 − 
eqgeq� �29�

�e,P1
* = �e,eq�1 − 
eqgeq� �30�

with


eq = �s,eq/�e,eq �31�

geq = 
�sg�P1/�s,eq �32�

The Mean Isotropic Scaling Model. We assumed that the medium
has mean coefficients and albedo, respectively,

�̄a,e,s =�
4�

�a,e,s���d�/4� �33�


̄ = �̄s/�̄e �34�
Following the method described for the directional isotropic

scaling model �DIS� with the previous mean coefficients and solv-
ing the resulting system obtained by integrating Eq. �18��b� over
the scattered solid angle as 1/4��4� . . .d�� leads to

�̄ = 1/�1 − 
̄ḡ� �35�

�̄e
* = �1 − 
̄ḡ��̄e �36�


̄* = 
̄�1 − ḡ�/�1 − 
̄ḡ� �37�

with

ḡ =�
4�

g���d�/4� �38�

It is important to note that for particles randomly oriented in
space, such as spheres, the radiative properties are independent of
the incidence direction and the three isotropic scaling models be-
come equal.

Numerical Solution. The solution of the radiative transfer in-
volves the simultaneous solution of Eqs. �1� and �4�. The discrete
ordinate method �S-n� is used to obtain the dimensional heat flux
and temperature within the medium for both exact anisotropic and
isotropic problems. In this method, the integral part of the equa-
tion is replaced by a finite quadrature sum, thereby transforming
the RTE into a system of linear differential equations �24�. The
control volume method with the diamond scheme is used to solve
the system of linear differential equations obtained by the S-n.
The space is divided in uniform control volumes and several
Gauss quadrature are used. The solution process is iterative and
the iteration continues until convergence criteria corresponding to
a relative change in I smaller than 10−5%.

To solve the exact anisotropic and isotropic problems, the
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knowledge of the extinction/scattering coefficients, the phase
function and the bias scattering factor of the medium are required.
The predictions of these properties are discussed in the next sec-
tion.

Radiative Properties of the Fibrous Medium. The fibers in
the insulation medium are usually several millimeters long and
1 to 15 �m in diameter, and can be assumed as infinitely long
circular cylinders because their lengths are far larger than the
incident wavelength. Figure 1 presents the geometry of scattering
by infinitely long cylinder at oblique incidence. The cylinder of
radius r and complex index of refraction m is placed in free space.
The incoming incident radiation of wavelength � and direction
defined by angle �, is assumed to be unpolarized for each fiber.
The scattered radiation propagates along the conic surface defined
by the apex angle of �−2�.

The incident angle � between the incident direction and the
fiber axis, the incident direction �� ,�� and the fiber orientation
direction in the medium �� f ,� f� are related by

sin � = �� f + ��1 − �2��1 − � f
2� cos�� − � f� �39�

The azimuthal angle of the cone, � �Fig. 1�, can be derived from
the incident angle � and the scattering angle � through the fol-
lowing equality �6,7�

cos � = sin2 � + cos � cos2 � �40�

According to Lee �6�, the single fiber scattering phase function is
given by

p��,�,Of� =
4�

�2

���,��
Cs��,Of�

�41�

with

���,�� = i��,��/��1 − cos ���1 + cos � − 2 sin2 �� �42�

The radiative properties: the extinction/scattering coefficients and
the scattering phase function of the medium are determined re-
spectively by the following relations

��e���,�s���
 =�
0

��
Of

�Ce��,Of�,Cs��,Of�
dOfdNf�r�

�43�

P��,�� =

�
0

��
Of

Cs��,Of�p��,�,Of�dOfdNf�r�

�
0

��
Of

Cs��,Of�dOfdNf�r�

�44�

Here dOf =d� fd� f /4� is the orientation distribution of the fibers
and dNf�r�=Nf�r�dr specifies the total fiber length of radius r in a
unit volume. The extinction and scattering cross section per unit
length Ce ,Cs and the angular distribution of the scattered intensity
i�� ,�� are calculated from electromagnetic theory of the scatter-
ing of radiation by infinitely long cylinders �25,26�. For mono-
diameter insulation the integral over dNf�r� is replaced by fv /�r2

with fv the volume fraction of a fibrous medium. In the case of
fiber randomly oriented in space, the integration over dOf can be
replaced by an integral from 0 to � /2 over cos �d� and relations
�43� and �44� become, respectively �27,28�

��e,�s
 =
fv

�r2�
0

�/2

�Ce���,Cs���
cos �d� �45�

P��� =
4fv�

�3r2�s
�

0

�/2

���,��cos �d� �46�

For fiber in random azimuthal orientation in the plane parallel to
the boundary, the integration over dOf can be replaced by an
integral from 0 to � over ��� f�d� f /�. By using Eqs. �39�, �43�,
and �44� the integration over d� f is computed in a manner which
removes the incident azimuthal dependence of the radiative prop-
erties. The calculation gives, respectively �27,28�

��e���,�s���
 =
fv

�2r2�
�−

�+ �Ce���,Cs���
��� f�cos �

��sin �+ − sin ���sin � − sin �−�
d�

�47�

P��,�� =
4fv�

�4r2�s����
�−

�+ ���,����� f�cos �

��sin �+ − sin ���sin � − sin �−�
d�

�48�

where

�± = sin−1��� f ± ��1 − �2��1 − � f
2�� �49�

Bias Scattering Factor. Defined by Eq. �17�, it can vary from
−1 to +1. In general, the negative value corresponds to backward
scattering, the zero to isotropic and the positive value to forward
scattering. When the radiative properties are independent of the
incident direction, such as for particle randomly oriented in space,
the bias factor is called the asymmetry scattering factor. Introduc-
ing Eq. �44� into Eq. �17� yields

Table 1 Four gray fibrous medium characteristics

Fig. 1 Geometry of scattering by a fiber at oblique incidence
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g��� =

�
0

��
0

��
Of

Cs��,Of�p��,�,Of�cos � sin �dOfdNf�r�d�

2�
0

��
Of

Cs��,Of�dOfdNf�r�

�50�

We proposed to carry out the integration over � before the integration over the fiber orientation and total length of fiber in a unit
volume. Furthermore, for an incident radiation �, the maximum scattering angle on a single fiber is �=�−2�. With these specifica-
tions, Eq. �50� becomes

g��� =

�
0

��
Of

�
0

�−2�

Cs��,Of�p��,�,Of�cos � sin �d�dOfdNf�r�

2�
0

��
Of

Cs��,Of�dOfdNf�r�

�51�

Since the scattering cross section per unit length is independent of
the scattering angle, the above equation can be rewritten as

g��� =

�
0

��
Of

Cs��,Of�
cos ��dOfdNf�r�

�
0

��
Of

Cs��,Of�dOfdNf�r�

�52�

with


cos �� =
1

2�
0

�−2�

p��,�,Of�cos � sin �d� �53�

Here, 
cos �� is the bias scattering factor of a single fiber defined
by Marschall and Milos �29�. By using the previous relation to-
gether with relations �40� and �41�, one obtains


cos �� =
2�

�2Cs����
0

�

i��,���sin2 � + cos2 � cos ��d� �54�

From relation �52�, we can conclude that the bias scattering factor
of fibrous medium is a function of the bias scattering factor of a
single fiber. This conclusion can be easily generalized to calculate
fibrous medium scattering phase moments. For mono–diameter
insulation with fiber randomly oriented in space or fiber in random
azimuthal orientation in the plane parallel to the boundary, the
explicit expressions of the bias scattering factor Eq. �52� of the
medium is, respectively

g =
2�fv

�3r2�s
�

0

�/2�
0

�

i��,���sin2 � + cos2 � cos ��cos �d�d�

�55�

g��� =
2�fv

�4r2�s���

��
�−

�+�
0

�
i��,���sin2 � + cos2 � cos ����� f�cos �

��sin �+ − sin ���sin � − sin �−�
d�d�

�56�
It should be noted that the above equations are simple in form and
easy to compute.

Results and Discussion
We assumed that azimuthal symmetry prevails in the medium in

radiative equilibrium. We considered four gray fibrous media. The
fibers in the medium are randomly oriented either in space or in

the plane parallel to the boundary. We also assumed uniform size
distribution in the medium with the volume fraction of the fibers
fv=0.004. Table 1 lists parameters of the four gray media studied.

The solution of the exact and the isotropic scaling �DIS, P1
isotropic model �P1IS�, mean isotropic model �MIS�� is obtained

Fig. 2 Scattering phase function versus scattering angle: „a…
medium 2, „b… medium 3
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making use of the same solver: the discrete ordinate method.
Moreover, the same subroutines DQDAG and DTWODQ from
IMSL �30,31� with 30 to 61 points Gauss–Kronrod recommended
for oscillatory functions were used to evaluate the single or double
integrals of radiative coefficients: absorption, extinction, and the
scattering coefficients; bias scattering factor; and scattering phase
function. The P1IS and MIS average properties are evaluated us-
ing 21-point Gauss–Kronrod of IMSL �31� subroutine DQDAGS.
Therefore, it is interesting to see the accuracy and the cost in time
that using isotropic scaling implies.

The bias scattering factor of fibrous medium for fiber randomly
oriented either in space or parallel to the boundary has been com-
puted from Eq. �50� and from Eqs. �55� and �56�. Good agreement
was obtained between the two approaches. Furthermore, Eqs. �55�
and �56� derived from Eq. �52� requires smallest computation
time. Consequently, these equations will be used in the rest of the

Table 2 Isotropic parameters

Fig. 3 Extinction/scattering coefficients versus incident
direction

Fig. 4 Bias scattering factor versus incident direction

Fig. 5 Relative error versus Gauss quadrature: Fiber randomly oriented in space
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paper to evaluate the bias factor. An analysis of the convergence
on the exact problem shows that 60 directions Gauss quadrature is
sufficient. Thus, the exact solution is computed with 60 directions
Gauss quadrature for all cases. The results obtained using 100

control volumes are the grid independent results for this problem.
The dimensionless heat flux Q in the medium is defined as

Q = q/�b�T1
4 − T2

4� �57�
As an example, the scattering phase function for both fiber

randomly oriented in space and parallel to the boundary are shown
in Fig. 2 for a nonabsorbing Medium 2 and for an absorbing
Medium 3 �Lee �28��. The influence of the incident direction on
the scattering phase function can be observed.

For the four media, the variation of the extinction/scattering
coefficients and the bias scattering factor with the incident direc-
tion for fiber randomly oriented in the plane parallel to the bound-
ary is shown in Figs. 3 and 4, respectively. Figure 4 shows that the
bias factor depends weakly on incident direction for nonabsorbing
media �Mediums 1 and 2�, while this factor varies with the inci-
dent direction for absorbing media especially for Medium 3.

Table 2 summarizes the parameters used for the computation of
the isotropic scaling models. The mean radiative absorption, ex-
tinction, and scattering coefficients and the mean asymmetry fac-
tor are very close of radiative properties of fibrous medium ran-
domly oriented in space fibers.

Relative errors between isotropic scaling approximation and ex-
act solution for dimensionless heat fluxes are presented in Fig. 5
for fibers randomly oriented in space. For fibers randomly ori-
ented in space, a good agreement is observed between the isotro-
pic scaling approximation and the exact solution: the relative error
is less than 2% for all cases considered and for Gauss quadrature
greater than 12. It is also important to note that the error decreases
with increasing optical depth for highly scattering medium �Me-
diums 1, 2, and 4�.

Figure 6 shows the relative error between isotropic scaling
models and the exact solution for fibers randomly oriented in the
plane parallel to the boundary. Figure 6 also presents a compari-
son between the three different isotropic scaling models: DIS, P1,
P1IS and MIS isotropic scaling. For fibers randomly orientatied in
the plane parallel to the boundary, a great dispersion appears be-
tween the three different isotropic scaling models. The MIS gives
a poor accuracy with the exact solution: the relative error is be-
tween 3–20%. Thus, this approach is unsuitable for radiative
analysis. The DIS and the P1IS predict with accuracy heat flux for
all cases studied: telative errors are less than 2%.

Tables 3 and 4 compare the dimensionless isotropic scaling and
exact radiative heat fluxes for a medium with fibers randomly
oriented in space and in the plane parallel to the boundary, respec-
tively. The isotropic scaling solutions are for a 12 directions Gauss
quadrature. These tables also compared the central processing unit
�CPU� time �obtain with a processor Celeron-M, FSB 400 MHz�
between exact and isotropic scaling solutions. For all cases stud-
ied, CPU time of isotropic scaling approximation is much smaller

Fig. 6 Relative error versus Gauss quadrature for fiber parallel
to the boundaries: „a… thickness is 0.1 cm, „b… thickness is
1.0 cm, and „c… thickness is 3.0 cm

Table 3 Dimensionless radiative heat flux and CPU time for
fiber randomly oriented in space
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than CPU time of exact solution. The solution of the RTE with
isotropic scaling parameters was finished after 0.2–43 s in the
case of fibrous randomly oriented in space; 41–81 s for DIS;
125–190 s for P1IS and MIS; while the exact solution required
about 2350–5800 s. Therefore, isotropic scaling in the case of
medium with randomly oriented fibrous in space is over 80 times
faster; in the case of medium with randomly oriented fibrous in
plane, the directional isotropic scaling is over 50 times faster, the
P1 and the mean isotropic scaling are over 25 times faster than the
exact solution.

Conclusions
Three isotropic scaling models have been formulated for radia-

tive analysis in fibrous medium. The discrete ordinate method was
used to solve the radiative transfer equation of exact and isotropic
problems. This paper tends to show that fibrous medium is equiva-
lent to homogeneous medium with isotropic scattering phase func-
tion and radiative properties independent on the incident direction.
The results lead to the following conclusions.

• The P1 and the directional isotropic scaling have been
proved to model accurately radiative heat transfer in fibrous
medium with randomly oriented fiber either in space or par-
allel to the boundary.

• Arithmetic mean radiative properties cannot be used for ra-
diative analysis in randomly oriented fiber in a plane.

• The isotropic scaling model requires very few quadrature to
converge to exact solution than the exact problem.

• The isotropic scaling solution is much faster than the exact
solution.

In this paper, fibers randomly oriented either in space or in the
plane parallel to the boundary have been considered. The influ-
ence of other fiber orientations on the accuracy of the isotropic
scaling would be investigated.
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Nomenclature
fv � fiber volume fraction
g � asymmetry factor
I � radiative intensity
Ib � blackbody intensity
m � complex index of refraction
P � phase function
q � radiative heat flux
Q � dimensionless radiative heat flux

r � fiber radius
y � thickness

Greek Symbols
� � delta function
� � incident angle
� � azimuth angle
� � direction cosine in y direction
� � radiative coefficient
�b� Stefan-Boltzmann constant

 � albedo
� � polar angle
� � ordinate direction
� � scattering angle

Superscript
– � mean variables
* � scaled variable
� � scattering direction

Subscript
e � extinction
eq� equivalent
s � scattering
f � fiber
P1� P1 scaling
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Smoothing Monte Carlo Exchange
Factors Through Constrained
Maximum Likelihood Estimation
Complex radiant enclosure problems are often best treated by calculating exchange fac-
tors through Monte Carlo simulation. Because of its inherent statistical nature, however,
these exchange factor estimations contain random errors that cause violations of the
reciprocity rule of exchange factors, and consequently the second law of thermodynam-
ics. Heuristically adjusting a set of exchange factors to satisfy reciprocity usually results
in a violation of the summation rule of exchange factors and the first law of thermody-
namics. This paper presents a method for smoothing exchange factors based on con-
strained maximum likelihood estimation. This method works by finding the set of ex-
change factors that maximizes the probability that the observed bundle emissions and
absorptions would occur subject to the reciprocity and summation rules of exchange
factors as well as a nonnegativity constraint. The technique is validated by using it to
smooth the sets of exchange factors corresponding to two three-dimensional radiant
enclosure problems. �DOI: 10.1115/1.2035111�

Keywords: Exchange Factor, Monte Carlo, Constrained Maximum Likelihood
Estimation

Introduction
The Monte Carlo method is a powerful tool for analyzing radi-

ant enclosures, and is especially well suited for solving problems
involving complex geometries and surface properties. In its most
common implementation, the Monte Carlo method is used to es-
timate exchange factors Fij defined here as the fraction of total
radiant energy emitted by the ith surface that is ultimately ab-

sorbed by the jth surface. �These estimations are denoted F̂ij.�
Once the set of exchange factors has been estimated, an energy
balance is written over each surface having the form

qiAi = �iEbiAi − �
j=1

N

� jEbjAjF̂ij . �1�

The resulting system of linear equations is solved for the unknown
values of emissive power Ebi and heat flux, qi.

Since exchange factors are often analytically intractable, they
are instead estimated by performing a large number of statistical
experiments. In each experiment, a “photon bundle” representing
a quantity of radiant energy is emitted from a random location on
the ith surface in a direction chosen at random from a prescribed
distribution of emission angles. Each time this bundle is inter-
cepted by another surface it is either absorbed or reflected, de-
pending on the optical properties of the intervening surface rela-
tive to the value of a pseudorandom number. Every bundle is ray
traced until it is ultimately absorbed by another surface. Once a
large number of bundles have been emitted by all the surfaces, the
exchange factor between the ith and jth surfaces is estimated by

F̂ij=Nbij /Nbi, where Nbi is the total number of bundles emitted by
the ith surface and Nbij is the number of those bundles ultimately
absorbed by the jth surface.

From the definition of an exchange factor, it is clear that in

order to satisfy energy conservation over any surface, the subset
of exchange factors between a particular enclosure surface and the
other surfaces must sum to unity

�
j=1

N

Fij = 1. �2�

Also, since the second law of thermodynamics requires the net
heat transfer between any two surfaces having the same tempera-
ture to equal zero, it can be shown that any pair of exchange
factors must satisfy the reciprocity rule

�iAiFij = � jAjF ji. �3�

Equation �2� is satisfied when F̂ij is substituted for Fij since
every emitted bundle is ultimately absorbed. Nevertheless, be-

cause F̂ij contains a statistical error, F̂ij=Fij only as Nbi ap-
proaches infinity, and as a result Eq. �3� is generally not satisfied

for F̂ij and F̂ ji. Also, in many problems, pairs of exchange factors
that should be equal due to geometric symmetry may not be equal,
again due to stochastic errors inherent in the Monte Carlo ap-
proach.

When performing a radiant enclosure analysis, it is obviously
desirable for the exchange factor set to satisfy the first and second
laws of thermodynamics, and also to obey any geometric symme-
try. �This is especially important in the inverse design of radiant
enclosures, a procedure that is highly sensitive to errors in the
exchange factor matrix �1�.� Modifying the set of exchange factors
so that summation, reciprocity, and symmetry relations are satis-
fied is very problematic, however, since changing the exchange
factor set to satisfy one relationship generally results in a violation
of the other two; for example, if the reciprocity relationship were
used to modify the initial set of exchange factors in order to en-
force Eq. �3�, Eq. �2� would no longer be satisfied.

Two main types of algorithms have been developed for heuris-
tically modifying �or “smoothing”� exchange factor sets. Algo-
rithms of the first type work by modifying the set of exchange
factors so that both reciprocity and summation rules are obeyed,
but do not limit the size of the correction. van Leersum �2� pre-
sented a technique where the original set of exchange factors is

1Present Address: National Research Council, Ottawa, Canada, K1A OR6.
Contributed by the Heat Transfer Division of ASME for publication in the JOUR-
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modified iteratively by enforcing the summation and reciprocity
constraints in succession until the results converged; Lawson �3�
modified this technique to account for the relative accuracy of the
initial set of exchange factors. �Larger exchange factors are more
accurate, since they are estimated using more bundles.� Taylor et
al. �4� suggested calculating the elements in the upper triangle of
the exchange factor matrix, using reciprocity to solve for those in
the lower triangle of the matrix, and finally solving the diagonal of
the matrix through the summation relationship. Although these
algorithms are simple and easy to implement, there is no guaran-
tee that the modified set of exchange factors will be more accurate
than the original unsmoothed set.

The second type of algorithm addresses this shortcoming by
finding the smallest vector of correction factors that could be
added to the set of exchange factors so that it satisfies both sum-
mation and reciprocity relationships. This transforms the smooth-
ing problem into a constrained least-squares minimization prob-
lem, where the objective is to minimize the norm of the correction
vector subject to the constraints defined in Eqs. �2� and �3�. The
elements of the correction vector are often weighted when defin-
ing the objective function so as to ensure that the smaller, less
accurate exchange factors are modified in preference to the larger
ones. This technique was pioneered by Vercammen and Froment
�5� for smoothing Hottel’s exchange areas determined by the
Monte Carlo method, and was subsequently adapted and refined
by Larsen and Howell �6� and Loehrke et al. �7�. Although these
algorithms usually improve the accuracy of the exchange factor
set, the analytical solution of the constrained minimization prob-
lem is complex. They also occasionally generate negative ex-
change factors, which are nonphysical; imposing a non-negativity
constraint on the exchange factors renders the minimization prob-
lem analytically intractable.

This paper presents a method for smoothing exchange factors
based on constrained maximum likelihood �CML� estimation. In
this approach, each bundle emission is treated as an individual
statistical experiment, and Fij is interpreted as the probability that
a bundle emitted by the ith surface will be absorbed by the jth
surface. The constrained likelihood maximization procedure then
works to find these probabilities by maximizing the likelihood that
the results of all the statistical experiments �i.e., the intersection of
these results� will be observed subject to equality and inequality
constraints on the probabilities that enforce exchange factor sum-
mation, reciprocity, non-negativity, and symmetry relations. Al-
though constrained maximum likelihood has been used in many
other engineering and operations research applications for param-
eter estimation, to the best of the authors’ knowledge this is the
first time this approach has been used to solve for exchange fac-
tors. Jamshidian �8� and Schoenberg �9� provide thorough over-
views of constrained maximum likelihood estimation and recent
applications.

The technique is introduced by demonstrating how uncon-
strained maximum likelihood estimation can be applied to solve
for individual exchange factors between pairs of surfaces. Next, a
constrained maximum likelihood estimation procedure for
smoothing sets of exchange factors subject to summation, reci-
procity, and symmetry relations is presented. Finally, the method
is demonstrated by using it to smooth the exchange factor sets of
two three-dimensional enclosure problems; the enclosure in the
first problem has black surfaces, while the surfaces of the second
enclosure have both diffuse and specular optical properties, which
is more representative of a problem that might be encountered in
an industrial setting. The algorithm described in this paper is for
analyzing enclosures containing a nonparticipating medium, al-
though it could be modified to treat more complex problems.

Estimating a Single Exchange Factor Using Maximum
Likelihood Estimation

In a Monte Carlo simulation, the exchange factor between the
ith and jth surfaces Fij represents the fraction of energy emitted
by the ith surface that is absorbed by the jth surface, which is
estimated by

Fij � F̂ij = Nbij/Nbi, �4�

where Nbi is the total number of bundles emitted by the ith sur-
face, and Nbij is the number of those bundles ultimately absorbed
by the jth surface.

In the context of maximum likelihood estimation, each bundle
emission from the ith surface is treated as a Bernoulli experiment
with a binary outcome; the bundle is either absorbed by the jth
surface, or it is not. Furthermore, the exact exchange factor Fij is
interpreted as the probability that a bundle emitted from the ith
surface will ultimately be absorbed by the jth surface. Let Xij
represent a vector containing Nbi random binary variables used to
store the result of each Bernoulli experiment; once the kth experi-
ment is performed, Xij

k is assigned a numerical value xij
k , where if

the kth emitted bundle is absorbed by the jth surface xij
k =1; oth-

erwise, xij
k =0. The resulting probability mass function of Xij

k is
then

f�xij
k � = Fij

xij
k

�1 − Fij�1−xij
k
, xij

k � �0,1� . �5�

Since a total of Nbi bundles are emitted from the ith surface, the
Bernoulli experiment is performed Nbi times and a set of sample
data �xij

k ,k=1,2 , . . . ,Nbi� is generated. Furthermore, since each
Bernoulli experiment is independent, the probability of the entire
solution set occurring, i.e, the probability of outcome �xij

k ,k
=1,2 , . . . ,Nbi� is given by

Lij�Fij� = 	
k=1

Nbi

Fij
xij
k

�1 − Fij�1−xij
k

= F
ij

�
k=1

Nbi
xij
k

�1 − Fij�Nbi− �
k=1

Nbi
xij
k
, �6�

where Lij�Fij� is the likelihood function of Fij. Because Nbij of the
results �contained in Xij� equal unity, Eq. �6� simplifies to

Lij�Fij� = Fij
Nbij�1 − Fij�Nbi−Nbij . �7�

The value of Fij is estimated by finding the value F̂ij that
maximizes the probability of the experimentally observed results

occurring, i.e., Lij�F̂ij�=Max�Lij�Fij��. �Note that F̂ij only esti-
mates the true Fij, since it is determined using the results of a
finite number of Bernoulli experiments.� Because the natural log
function ln�u� monotonically increases with increasing u, this is

equivalent to finding the value of F̂ij that maximizes ln�Lij�Fij��,
i.e.,

ln�Lij�F̂ij�� = Max�ln�Lij�Fij��� = Max�Nbijln�Fij� + �Nbi

− Nbij�ln�1 − Fij�� . �8�

The value of F̂ij is solved by writing the first-order necessary
conditions at the maximum of ln�Lij�Fij��, i.e.,


 d�ln�Lij�Fij���
dFij



Fij=F̂ij

=
Nbij

F̂ij

−
Nbi − Nbij

1 − F̂ij

= 0, �9�

yielding the anticipated result

F̂ij = Nbij/Nbi. �10�

Computing a Set of Exchange Factors Using Con-
strained Maximum Likelihood Estimation

The technique described above is suitable for estimating a
single exchange factor between any pair of surfaces in a radiant
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enclosure. In practice, however, Monte Carlo is more often used
to calculate a set of exchange factors between all enclosure sur-
faces. These exchange factors form the �N�N� matrix F, with
elements Fij=Fij and where N is the number of enclosure sur-
faces.

The exchange factor matrix is usually estimated row-by-row;
estimates for the ith row are calculated by emitting Nbi bundles in
random directions from random locations on the ith surface, ray-
tracing each bundle until it is absorbed. Each time one of these
bundles is absorbed by the jth surface, Nbij is incremented. Once
all the bundles have been emitted by the ith surface, the ith row of

F is estimated by Fij� F̂ij=Nbij /Nbi , j=1,2 ,… ,N. Because each
bundle is ultimately absorbed by some surface, this procedure
produces a set of exchange factors that exactly satisfies the sum-

mation rule, Eq. �2�, with F̂ij substituted for Fij. Since each row
of F is estimated independently, however, the reciprocity relation
between any pair of surfaces is generally not satisfied.

One alternative is to first estimate �N2+N� /2 exchange factors
�say those in the diagonal and upper-triangular portion of F� in-
dependently through the Monte Carlo procedure described in the

previous section, and then use F̂ ji= ��iAi /� jAj�F̂ij to calculate the
remaining �N2−N� /2 exchange factors in the bottom triangle of F.
Although this method ensures that the reciprocity relationship
now holds between the surfaces, the summation rule is no longer
satisfied. This approach is also computationally inefficient, since
bundles absorbed by surface elements corresponding to the lower
triangle of F are ignored when calculating exchange factors.

These shortcomings can be avoided by using constrained maxi-
mum likelihood estimation to smooth a set of exchange factors.
Consider the ith row of F, which contains the exchange factors

from the ith surface to every other surface, �F̂ij , j=1,2 ,… ,N�,
estimated by emitting a total of Nbi bundles from the ith surface.
For each j=1,2 ,… ,N, the random outcome of such an experi-
ment is represented by vector Xij, which contains Nbi binary vari-
ables. If the kth bundle emitted from the ith surface is absorbed by
the jth surface, then Xij

k =1; otherwise Xij
k =0. Since every bundle

emitted by the ith surface is eventually absorbed

�
j=1

N

Fij = 1 �11�

and

�
j=1

N

Nbij = Nbi. �12�

As shown in the previous section, the probability that all the re-
sults contained in Xij will be observed �i.e., the intersection of

these results� is maximized by finding the value of F̂ij that maxi-
mizes Lij�Fij� as defined in Eq. �6�. If Nbi bundles are emitted for
every surface, the intersection of the results contained in all N
�N solution sets corresponds to the probabilities contained in the

matrix F̂ that maximizes

L�F� = 	
i=1

N

	
j=1

N

Fij
Nbij . �13�

Again, since the natural logarithm is a monotonically increasing

function, F̂ also maximizes.

FCML�F� = �
i=1

N

�
j=1

N

Nbijln�Fij� . �14�

The set of probabilities that maximizes the likelihood of the re-
sults contained in the N�N solution sets while simultaneously
satisfying the summation and reciprocity rules is found by solving
the constrained nonlinear programming �NLP� problem

Maximize FCML�F� �15�
subject to the summation rule,

Fe = e , �16�

where e is the N vector of ones, and the reciprocity rule,

EF = FTE , �17�

where E is a diagonal matrix with Eii=�iAi. It is also necessary to
impose a lower bound on the probabilities

Fij � 0, i, j = 1,2,…,N . �18�

The upper bound on the probabilities, Fij�1, is redundant due to
Eqs. �16� and �18�.

Most enclosure geometries also involve pairs of exchange fac-
tors that should be equal due to enclosure symmetry. This condi-
tion can be enforced by specifying a set of additional equality
constraints, or alternatively by inserting perfectly specularly re-
flecting surfaces along lines of symmetry and then solving for the
exchange factors over the reduced computational domain. The lat-
ter approach should be used whenever possible, as this both im-
proves the accuracy of a solution obtained by performing a given
number of Monte Carlo trials and reduces the size and complexity
of the NLP maximization problem.

The NLP problem described above is further simplified by au-
tomatically enforcing the reciprocity constraints, which is done by
keeping only the exchange factors contained in the diagonal and
upper triangle of F as variables, and substituting Fij
= �Aj� j�F ji / �Ai�i� for the remaining exchange factors in the lower
triangular portion of F. This transforms the original �N�N�
dimensional NLP maximization problem into a �N2

+N� /2-dimensional problem, where the objective is to maximize

FCML�F� = �
i=1

N

Nbii ln�Fii� + �
i=1

N

�
j=i+1

N

�Nbij + Nbji�ln�Fij� ,

�19�
subject to

�
j=1

i−1
Aj� j

Ai�i
F ji + �

j=i

N

Fij = 1, i = 1,2,…,N , �20�

and

0 � Fij, i = 1,2,…,N, j = i, i + 1,…,N . �21�

Implementation and Demonstration
The constrained maximum likelihood approach described above

is demonstrated by using it to smooth exchange factor sets from
two enclosure problems. In both cases, the unsmoothed exchange
factors were first calculated by ray tracing, and then smoothed by
solving the NLP problem defined by Eqs. �19�–�21�. Optimization
was carried out using GAMS/CONOPT �10,11�, an algorithm specifi-
cally developed for solving nonlinear programming problems in-
volving large systems of constraints. In order to validate the
smoothing procedure, the accuracies of the exchange factor sets
obtained using different numbers of bundles were measured by

Fig. 1 Enclosure geometry for the first test problem †7‡. „Sur-
face numbers are circled.…
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�rms = � 1

N�
i=1

N

�
j=1

N

�F̂ij − F ij
exact�2�1/2

, �22�

where F ij
exactis either the analytical solution if it is available, or an

estimate of the analytical solution obtained using a large number

of bundles relative to the number used to calculate F̂ij.
The constrained maximum likelihood algorithm was also as-

sessed by comparing its performance to that of a least-squares
�LS� smoothing algorithm, which works by minimizing

FLS�F� = �
i=1

N

�
j=1

N
�Fij − F̂ij

0 �2

2wij
, �23�

subject to reciprocity, summation, and nonnegativity constraints.

The F̂ij
0 values belong to a set of unsmoothed exchange factors

estimated using the specified number of bundles, and wij was set

equal to F̂ij
0 as recommended in �7� so as to favor modification of

the smaller, less accurate exchange factors. This minimization
problem was again solved using GAMS/CONOPT �10,11� in contrast
with prior implementations of the least-squares smoothing meth-
ods �5–7�, which carried out the minimization using more com-
plex analytical techniques that could not guarantee a non-negative
exchange factor set. It should also be noted that the optimization
problem associated with least-squares smoothing is roughly twice
as large as that corresponding to the constrained maximum likeli-
hood technique, since the former method must smooth the full set
of exchange factors while the latter makes use of reciprocity re-
lations to reduce the number of problem variables. The relative
size of the optimization problems associated with the two smooth-
ing techniques is summarized in Table 1.

The first problem, shown in Fig. 1, is the one Loehrke et al. �7�
used to evaluate their least-squares smoothing technique. It con-
sists of a right-circular cylinder with a length/radius ratio of 13:1
divided into seven surfaces, each surface having an emissivity of
one. This results in a set of 49 exchange factors to be solved.
�Although very simple, this example problem was selected be-
cause the Fij

exact values in Eq. �22� equal the view factors between

the surfaces, which in turn are solved analytically.� The con-
strained maximum likelihood and least-squares techniques were
applied to exchange factor sets generated by emitting between
Nb=102 and Nb=106 bundles per surface element. Twenty differ-
ent trials were performed using each different number of bundles,
and the average accuracies of the exchange factor sets generated
using the two smoothing techniques are plotted in Fig. 2 along
with the accuracies of the initial unsmoothed sets. In each case,
the exchange factor sets were smoothed in under a minute of CPU
time on a 1.8 GHz workstation.

The root-mean square error of the unsmoothed set decreases
according to �rms�Nb

−0.502 for 102�Nb�106, which is consistent

with the 1/
Nb trend predicted by the central limit theorem. The
performance of the two smoothing techniques were quantified by
fitting curves of the form

�rms�Nb� = C/
Nb �24�
to the data. As shown in Fig. 2, when large numbers of bundles
are used �Nb�1�103� both smoothing techniques produce ex-
change factor sets that are approximately 25% more accurate than
the unsmoothed sets estimated using a specified number of
bundles, which is consistent with the results of Loehrke et al. �7�.
Equivalently, the number of bundles required to achieve a speci-
fied accuracy level is reduced by almost half when smoothing is
used.

The second enclosure shown in Fig. 3�a� is more representative
of a problem that might arise in an industrial setting, as the optical
properties of the enclosure surfaces have both diffuse and specular
components; these properties are summarized in Table 2. The
computational domain was formed by replacing lines of symmetry
with perfectly specular reflecting surfaces, as shown in Fig. 3�b�.
Surfaces 3�, 4�, 5�, and 6� were then discretized into 28 uniformly
spaced surface elements, resulting in a set of 784 exchange fac-
tors. The CML and least-squares smoothing techniques are again
assessed by following the procedure defined above; in this case,
however, the Fij

exact values in Eq. �22� are analytically intractable
and instead were estimated by emitting 108 bundles per surface.
The standard error of these values is less than 5�10−4, as esti-
mated using the replication procedure described in �12�. As shown
in Fig. 4, both the CML and least-squares smoothing techniques
produce exchange factor sets that are approximately 25% more
accurate than the corresponding unsmoothed set.

It should again be noted, however, that the NLP problem solved
when performing CML smoothing is roughly half the size of the

Table 2 Surface properties for second test problem

Surface 1 2 3 4 5 6

� 0.3 0.3 0.3 0.3 0.9 0.6
�d

0.2 0.2 0.2 0.2 0.1 0.3
�s

0.5 0.5 0.5 0.5 0.0 0.1

Fig. 2 RMS error in exchange factor sets for the first test
problem

Fig. 3 „a… Enclosure geometry, and „b… computational domain
for the second test problem. „Perfectly specular reflecting sur-
faces are shaded.…

Table 1 Comparison of constrained maximum likelihood
„CML… and least squares „LS… optimization problems

CML LS

Number of variables �N2+N� /2 N2

Number of linear equality constraints N �N2−N� /2
Number of linear inequality constraints �N2+N� /2 N
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one solved during least-squares smoothing. Furthermore, the
CML method is more accurate than the least-squares method
when relatively few bundles are used �Nb�1�103�, which shows
that CML smoothing would be a powerful tool for solving enclo-
sure problems involving many surface elements, and where com-
putational resources are limited.

Conclusions
This paper presented a constrained maximum likelihood esti-

mation technique for smoothing exchange factor sets containing
stochastic errors, with the objective of generating a more accurate
set that also satisfies summation and reciprocity conditions. The
method works by finding the exchange factor set that maximizes
the probability that the results of a large number of statistical
experiments �bundle emissions and absorptions� would be ob-
served, subject to the summation, reciprocity, and nonnegativity
constraints. Maximization is carried out using GAMS/CONOPT, a
much simpler and faster way to solve the optimization problems
associated with exchange factor smoothing compared to the ana-
lytical techniques employed in previous approaches.

The constrained maximum likelihood method was demon-
strated by using it to smooth the exchange factor set correspond-
ing to two three-dimensional radiant enclosure problems. Ex-
change factor sets smoothed using the CML method were shown
to be approximately 25% more accurate than the corresponding
unsmoothed sets. The CML-smoothed sets were also more accu-
rate than those smoothed using the least-squares technique in
cases where relatively few bundles were used to estimate the ex-
change factors.

Although the algorithm presented here can only be applied to
radiant enclosures containing diffuse-specular surfaces and a non-
participating medium, it will soon be extended to treat more com-
plicated problems.

Nomenclature
Ai 	 Area of ith surface element, m2

C 	 Coefficient in Eq. �24�
Ebi 	 Blackbody emissive power of ith surface ele-

ment, W/m2

E 	 Diagonal matrix with Eii=�iAi
F 	 Exchange factor matrix

FCML�F� 	 Constrained maximum likelihood objective
function

FLS�F� 	 Least-squares minimization objective function
Fij 	 Exchange factor between ith and jth exchange

factors and element of F
f ij�Fij� 	 Probability density function of Fij
Lij�Fij� 	 Likelihood function of Fij

N 	 Number of surface elements
Nb 	 Total number of bundles used to estimate a set

of exchange factors
Nbi 	 Number of bundles emitted by the ith surface

element
Nbij 	 Number of bundles emitted by the ith surface

element that are absorbed by the jth surface
element

qi 	 Net radiative heat flux leaving ith surface ele-
ment, W/m2

wij 	 Weight used in least-squares method, Eq. �23�
Xij 	 Boolean solution space for Bernoulli experi-

ments used to estimate Fij

xij
k 	 Result of kth Bernoulli experiment used to

estimate Fij
�i 	 Emissivity of ith surface element

�RMS 	 Error between reduced set of exchange factors
and exact solution, Eq. �22�

�di 	 Diffuse reflectivity of ith surface element
�si 	 Specular reflectivity of ith surface element

Subscripts and Superscripts
i, j 	 Surface element indices

k 	 Bundle emission index
∧ 	 Estimated quantity
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1 Introduction
An accurate numerical prediction of the thermal transport in

nanoscale crystalline structures is very important for both funda-
mental physics and engineering applications. A comprehensive
analysis of thermal conductivities of nanostructures can lead to a
deeper understanding of phonon scattering mechanisms, which is
of fundamental theoretical significance. In addition, aggressive
miniaturization of microelectronic devices leads to substantially
increased power dissipation. Thermal management is problematic
in such devices because at sub-100 nm length scales, thermal
conductivity deviates significantly from bulk values and accurate
values are often not known. In theoretical analysis of phonon
transport, the Boltzmann transport equation �BTE� is often the
starting point. Based on the lifetime assumption and with some
simplifications, it is possible to achieve a closed form analytical
solution of the BTE �1–6�. However, since many assumptions
must be introduced to reach a closed form solution, the results
may deviate significantly from experimental observations.

In 1966, two numerical techniques were proposed to solve the
BTE for electron transport: the Monte Carlo �MC� method �7� and
an iterative technique �8�. Since then, MC simulations have found
wide application in investigations of electron distribution, average
energy, drift velocity, diffusion coefficients, and band structure for
carrier transport in semiconductors �9�. In MC simulation, self-
consistent calculation must be guaranteed, in which an assumed
distribution function f�k� is used to evaluate scattering probabili-
ties and the same f�k� must be obtained as the solution. Since
electron-electron interactions do not significantly affect electron
transport in semiconductors, they are often neglected in the tradi-
tional MC simulation. Several efforts �10–12� to account for
electron-electron interactions showed only partial success and
these interactions remain a difficult problem to treat. The MC
method cannot be directly implemented to solve the BTE for pho-
non transport since phonon-phonon interactions must be included

in the simulation of phonon transport. Phonon-phonon scattering
processes and phonon relaxation times or lifetimes are essential
for phonon transport modeling. Only at extremely low tempera-
ture, where ballistic transport dominates, is the phonon-phonon
interaction unimportant. In 1988, Klitsner et al. �13� applied the
MC method to study ballistic phonon transport and found good
agreement with a theoretical analysis. Later Peterson �14� simu-
lated phonon transport using a MC method based on the Debye
model, in which all phonons were assumed to have the same
propagating speed, and interactions between phonons were ac-
counted for by assuming an average lifetime. With these assump-
tions, heat transfer in a one-dimensional cell array was simulated
and the time evolution of the temperature profile was predicted. In
2002, Mazumder and Majumdar �15� reported MC simulation for
phonon transport in thin Si films. In their work, phonon polariza-
tion and phonon dispersion were taken into account by consider-
ing the dependence of phonon lifetime on frequency, polarization,
and temperature. Their simulation results agreed well with the
experimental data for temperatures lower than room temperature.
However, for higher temperature, the three-phonon scattering
probability increases and the phonon transition rates between dif-
ferent polarization and different frequency phonons increase.
Simple models assuming that the phonon transition process is
based on an averaged phonon lifetime lead to unconverged results
for phonon transport. Hence for MC simulation at high tempera-
ture, self-consistent calculations must be performed to ensure con-
vergence of the simulations.

In the present work, we first modify the MC technique to study
phonon transport in bulk Si at temperatures both below and above
room temperature �up to 500 K�, and then apply the method to
model phonon transport in Si nanowires. All important phonon
scattering processes in semiconductors, such as three-phonon scat-
tering, boundary scattering, and impurity scattering are taken into
account. A genetic algorithm is adopted to guarantee both energy
and momentum conservation for normal �N� scattering and energy
conservation for Umklapp �U� scattering. The simulation results
for the thermal conductivity of bulk Si fit the experimental results
very well in the temperature range from 40 K to 500 K. Below 40
K, since no boundary scattering is included in the simulation for
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bulk Si, the simulation results deviate from the experimental
value. For the thermal conductivity of Si nanowires, the simula-
tion results agree reasonably well with recent experimental results
�16,17�.

2 Transport Model and Monte Carlo Method
The Boltzmann equation for phonon transport in the presence

of a temperature gradient is written as

V� g• � T
dn

dT
= � �n

�t
�

c

�1�

where V� g is the group velocity

V� g = �q�� �2�

n is the distribution function, q is the phonon wave vector, T is the
local temperature, � is the phonon frequency, and ��n /�t�c is the
rate of change of n due to collisions. On the left side of Eq. �1�, n
can be replaced by n0, the equilibrium Planck distribution. Con-
sequently Eq. �1� can be read as

V� g• � T
dn0

dT
= �

K�

���q,q��n�q�� − ��q�,q�n�q�� �3�

where

n0 =
1

exp���/kBT� − 1
�4�

Here � is the Planck’s constant divided by 2�, kB is the Boltz-
mann’s constant, and ��q ,q�� is the function describing the scat-
tering rate from state q� to state q, which depends on the phonon
frequency and polarization.

Equation �3� is a nonlinear integrodifferential equation. The
transition rate ��q ,q�� on the right side of Eq. �3� is very com-
plicated, and without simplification the formulation is difficult to
solve. This difficulty can be avoided by using MC. To calculate
thermal transport, MC does not try to solve Eq. �3� directly, but
instead, follows a large number of phonons in a three-dimensional
space subjected to a temperature gradient. The simulation domain
is divided into many cells and initial local temperature is imposed
on each cell according to the temperature gradient. The initial
velocity, polarization, and frequency of each phonon are based on
the local temperature. More details on the initial conditions can be
found in Ref. �15�. The number of phonons in each cell depends
on the local temperature and the cell volume. For silicon, the
frequency range between zero and the maximum cut-off fre-
quency of the longitudinal acoustic branch is divided into 1000
spectral intervals. The number of phonons per unit volume in the
ith spectral interval is calculated from the equilibrium Planck dis-
tribution

Ni = �n��0,i,LA�	D��0,i,LA���i + 2�n��0,i,TA�	D��0,i,TA���i

�5�

where n ��0,i, LA� and n ��0,i, TA� are the Bose-Einstein distri-
bution for the longitudinal and transverse acoustic branches, re-
spectively. D��0,i� is the density of states, and ��=�max,LA/Nb,
in which Nb is the number of intervals from zero to the maximum
cutoff frequency of the longitudinal acoustic branch. In Eq. �5�,
three acoustic branches in the phonon dispersion relation are taken
into account, i.e., one longitudinal acoustic branch and two trans-
verse acoustic branches. Optical phonons are not considered be-
cause they contribute little to thermal conductivity due to their
small group velocity. In this paper Nb is selected to be 1000. The
total number of phonons can be obtained by summing up the
phonons in the 1000 spectral intervals

N = �
i=l

Nb

Ni �6�

The actual number of phonons per unit volume calculated from
Eq. �6� is usually a very large number. With the current computa-
tional power, it is impossible to simulate the movements of such a
large number of phonons in each cell. In order to save computa-
tion time, a prescribed number of phonons are used to represent
the actual phonons in each cell by introducing a scaling factor

W =
Nactual

Nprescribed
�7�

Equation �7� indicates that one phonon in the simulation code
stands for W actual phonons.

Once the phonons are produced, the simulation starts with all of
the phonons in given initial conditions with appropriate sampled
frequencies, group velocities, wave vectors, and polarizations. A
duration of free flight is set and all of the phonons move linearly
from initial positions to new positions such that

r�i = r�0,i + V� g,i�t �8�

where r�, r�0,i are the new and initial positions of the ith phonon,
respectively, and �t is the free flight time. The free flight time is
kept constant during the simulation and its value is set as small as
possible in order to not miss any scattering events. However,
smaller �t increases computation expense. To avoid undue com-
putational burden, the time step in our simulation was set as one
half of the smallest phonon scattering time. It was found that this
time step gave stable simulation results. If the phonon encounters
a boundary during free flight, it is reflected as described in Sec.
3.1. If it does not, the phonon lifetime is calculated according to
Matthiessen’s rule

1

�T
=

1

�i
+

1

�U
+

1

�N
�9�

where the total phonon lifetime �T depends on the lifetime for
impurity scattering �i, the lifetime for U processes �U, and the
lifetime for N processes �N. Each phonon has its own unique
lifetime based on its frequency, polarization, impurity scattering
time scale, and local temperature �3�. The calculation of these
lifetimes is discussed in more detail in the following sections and
in Table 1. P�t�, the probability that a phonon has already existed
for a free flight time �t without being scattered, decreases with
time such that

�P

�t
= −

P

�T
�10�

The probability that the phonon is scattered after the free flight
time is

P̄ = 1 − P = 1 − exp�− �t/�T� �11�
To impose a statistical scattering mechanism on the phonon, a

random number R1, is generated. If R1� P̄, the phonon will be
scattered and replaced by a new phonon at a different state. Then

the new phonon begins its new free flight. If R� P̄, the phonon
will continue its free flight with its state unchanged. If the simu-
lation time is long enough, the system equilibrates, and the final
results can be extracted through averaging over a fixed time step
�15�.

When R1� P̄, a scattered phonon is found, then, the following
procedure is used to determine which scattering process the pho-
non engages in. As described in Eq. �9�, three scattering processes
constitute the transition rate. However, the phonon can only en-
gage in one of them. In order to distinguish which process the
phonon engages in, the phonon lifetime is divided into two parts

1

�T
=

1

�1
+

1

�2
�12�

where
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1

�1
=

1

�i
�13�

and

1

�2
=

1

�N
+

1

�U
�14�

The probability that the phonon engages in impurity scattering
process can be expressed as

Pi =
1/�1

1/�T
�15�

A random number R2 is generated. If R2� Pi, the phonon will
be scattered by impurities. Otherwise, it engages in three phonon
scattering process. The same approach is used to determine if the
phonon engages in N or U scattering processes.

3 Scattering Mechanisms and their Realization in MC
Simulations

3.1 Boundary Scattering. During phonon transport, the pri-
mary phonon scattering processes are phonon-boundary colli-
sions, impurity scattering, and three-phonon inelastic interactions.
Boundary collisions play an important role in thermal resistance
as the structure size decreases to nanoscale. When a phonon
strikes the structure wall, a random number is first drawn. If this
random number is less than a prescribed specularity parameter d,
the phonon is specularly reflected using the following equation as
in Ref. �15�:

s�r = s�i + 
s�i•n� 
n� �16�

where s�i, s�r are the direction vectors of the incident and reflected
phonons and n� is the unit surface normal. In this case the phonon
incident angle is equal to the reflected angle. If the random num-
ber is larger than d, the phonon is reflected diffusely at the sur-
face. Its direction is selected according to the following relation:

s�r = sin 	 cos 
t�1 + sin 	 sin 
t�2 + cos 	n� �17�

where 
=2�R3, cos 	=2R4−1, R3, R4 are random numbers, t�1, t�2
are unit surface tangents, which must be perpendicular to each
other such that

t�1 � t�2 = n� �18�

If d is set to 1, the boundary is perfectly smooth and all
phonons will be specularly reflected. In this case, the boundary
scattering process does not contribute to thermal resistance.

3.2 Impurity Scattering. Impurity scattering can be the
dominant phonon scattering mechanism at low temperatures. The
time scale for scattering by impurities is expressed using a simple
model by Vincenti and Kruger �18�

�i
−1 = �
�
V� g
 �19�

where � is a constant of the order of unity, � is the defect density
per unit volume, and 
 is the scattering cross section expressed as
�19�


 = �r2� �4

�4 + 1
� �20�

Here r is the atomic radius of the impurity and �=r
q� 
, and q�
stands for the phonon wave vector. If only the isotope scattering is
taken into account, Eq. �19� can be simplified as

�i
−1 = Bi�

4 �21�
If a phonon is scattered by an impurity or a defect, its wave

vector will be perturbed and its flight direction will be changed. In
order to simulate the impurity scattering process, a new wave
vector and a new velocity direction will be generated based on the
phonon’s frequency. The phonon frequency and polarization keep
their original values.

3.3 Three-Phonon Scattering. Three-phonon interactions in-
clude both normal and Umklapp scattering processes. Peierls �20�

Table 1 Parameters used in Monte Carlo simulation
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showed that N processes contribute to thermal resistance by trans-
ferring momentum from one group of modes, where resistance �R�
processes �Umklapp or impurity processes� are weak, to other
modes where R processes are strong. This effect is particularly
important for point defect scattering, since the scattering probabil-
ity is strongly frequency dependent. Callaway �2� assumed that N
processes relax toward a quasiequilibrium distribution, i.e., one
shifted in momentum space, while R processes tend to restore true
equilibrium. The shift of the quasiequilibrium distribution is cho-
sen so that N processes conserve momentum in the aggregate. The
displaced Planck distribution can be written as �2�

n��� � = �exp��� − ��•q�

kBT
��−1

= n0 +
��•q�

kBT

e��/kBT

�e��/kBT − 1�2 �22�

where �� is a constant vector in the direction of the temperature
gradient. From Eq. �22� the departure of the phonon occupation
number from that at thermal equilibrium for a small vector inter-
val can be written as

�N = 


�q�n��� � − n0�d3q

= �
qX

qx+�qx

�
qy

qy+�qy

�
qz

qz+�qz

�n��� � − n0��qx�qy�qz �23�

The three-phonon interactions obey the energy conservation
and momentum conservation laws

q�1 + q�2 ↔ q�3 �24�

q�1 + q�2 ↔ q�3 + G� �25�

�1 + �2 = �3 �26�

where G� is the reciprocal lattice vector.

4 Genetic Algorithm for Three-Phonon Scattering
In three-phonon scattering processes, if an initial phonon pro-

duces two phonons, both of the two new phonons will be fol-
lowed. If an initial phonon is absorbed along with another to
create a third phonon in the scattering process, the state of one of
the initial phonons will be set as the created phonon and the other
one will be destroyed by setting its energy as zero. Then all the
scattered phonons will be treated by a genetic algorithm to satisfy
momentum and energy conservation.

In order to satisfy Eqs. �24�–�26� simultaneously, a genetic al-
gorithm �21� is introduced to determine the “fitness” of an en-
semble of phonons. Fitness is an indication of how well the en-
semble satisfies momentum and energy conservations and is
reflected by two parameters D1 and D2, which are residuals of the
wave vector and frequency, respectively

D1 =

��
i=1

Np

qx,i� − �
i=1

Nc

qx,i�2

��
i=1

Nc

qx,i�2

+

��
i=1

Np

qy,i� − �
i=1

Nc

qy,i�2

��
i=1

Nc

qy,i�2

+

��
i=1

Np

qz,i� − �
i=1

Nc

qz,i�2

��
i=1

Nc

qz,i�2

�27�

D2 = ��
i=1

Np

�i� − �
i=1

Nc

�i�2

/��
i=1

Nc

�i�2

�28�

Here Nc is the number of phonons involved in a scattering
event, qx,i� , qy,i� , qz,i� , �i� are the new phonon wave vectors along the
x, y, z directions and frequencies, qx,i, qy,i, qz,i, �i are the corre-
sponding phonon parameters before scattering. Np is the number
of phonons to be created. In the simulation, the initial value of Np
is set to equal Nc to simplify the optimization process. However,
because of the three-phonon scattering process, the total number
of phonons may change and it is possible that Np does not equal
Nc. The genetic algorithm operates as follows:

1. Initialization: Create a father generation F= �f j 
 j=1,… ,n�
of phonon ensembles according to local temperature. Each
ensemble f j is defined as f j= �pi 
 i=1,… ,Nc�, so there are Nc

phonons per ensemble. Each individual phonon pi is coded
as a 12 digit binary number, so the total number of digits in
f j is 12Nc. The first digit of each pi represents the phonon
polarization, with 1 standing for LA and 0 for TA. The sec-
ond digit is a placeholder only, and is always set to 0. The
remaining ten digits represent the average phonon fre-
quency. This frequency is the average value in each of the
1000 spectral intervals described above. For example, if a
phonon frequency falls in the 600th interval and its polariza-
tion is LA, its average frequency is �600=600/1000
��max,LA and it is coded as pi= �1010 0101 1000�. It can be
seen that the last ten digits represent the value of 600 in
binary notation.

2. Reproduction: Create an offspring generation from the father
generation using the crossover operation. In this operation,
two ensembles from the father generation are randomly se-
lected and some digits �out of the total 12Nc digits for each
ensemble� are also randomly selected. One offspring en-
semble si is produced from the first selected father ensemble
by exchanging the selected digits with the second selected
father ensemble. For example if f1 and f2 are the first and
second randomly selected ensembles from the father genera-
tion as

� f1 = �0,0,1,0,…,1,1,0,1�
f2 = �1,0,1,0,…,0,0,0,1� �

and the underlined digits represent the randomly selected
digits, the offspring ensemble is generated as si
= �0,0 ,1 ,0 ,… ,1 ,0 ,0 ,1�. The number of crossover opera-
tions performed, m, is also selected randomly, yielding an
offspring ensemble set S= �s1 ,s2 ,… ,sm�.

3. Initial evaluation: Evaluate all ensembles in F and S and use
Eqs. �27� and �28� to calculate the residuals D1 and D2 for
each ensemble.

4. Selection: Choose the best ensemble from the union of F
and S: fbest�F�S by selecting the ensemble with minimum
D1 and D2.

5. Mutation: From the best ensemble generate a set of l /2 mu-
tants: M = �si�ªmut�sbest� 
 i=1,2 ,… , l /2�. The selection of l
is arbitrary; in this paper, it is set as six, which means three
ensembles will be produced from the best ensemble through
the mutation operation. Mutation means that selected digits
become 0 if their initial values are 1, and vice versa. For
example, if si= �0,0 ,1 ,0 ,… ,1 ,1 ,0 ,0�, after the mutation
operation, si�= �0,0 ,1 ,0 ,… ,0 ,0 ,1 ,0� will be produced as
one ensemble of the mutant set. k digits are randomly se-
lected in each ensemble to mutate. If k is set too large, it will
take a long time for the system to converge due to the algo-
rithm oscillation. The best value of k is set as two or three
for the algorithm to be stable. In our simulation k is set to be
three.

6. Create a new father generation: Calculate the residuals of all
ensembles in M, S, and F, select the na ensembles with the
lowest residuals, and create a new father generation F from
these. The number na depends on the total number of en-
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sembles. If na is set too large, it takes a long time for the
genetic algorithm to converge. In this paper, it is set as two
in each generation step.

7. Terminate check: If at least one of the ensembles has
achieved a predefined fitness, stop and return the best indi-
vidual. Otherwise, continue with the reproduction step �step
2�.

N-type scattering processes should satisfy both momentum and
energy conservation, while a U processes only need to satisfy
energy conservation. Using a fitness criterion of 0.001, the algo-
rithm optimization target is thus to satisfy D2�0.001 for U scat-
tering processes and D1+D2�0.001 for N scattering processes.
The N and U scattering processes are treated in two different
groups. Phonons engaged in N scattering processes are considered
together to satisfy the energy conservation and momentum con-
servation and phonons engaged in U scattering processes are put
together to satisfy the energy conservation. The momentum con-
servation is not enforced in the calculation for U scattering pro-
cess, similar to that in Refs. �13–15�. However, simulation results
for bulk silicon suggest that neglecting momentum conservation
for U process does not significantly affect the simulation result in
the temperature range considered in the paper.

As discussed in Ref. �15�, in principle, the three-phonon scat-
tering process can be treated by regarding each phonon as a po-
tential candidate for scattering and exploring the possibility of its
interaction with every other phonon in its vicinity following the
selection rules. That way, the momentum and energy conserva-
tions can be met rigorously. However, the computation would be
immensely expensive and impossible for most cases. The genetic
algorithm provides a way to meet the momentum and energy con-
servations for N processes and energy conservations for U pro-
cesses. Compared to the more fundamental approach mentioned
above, the genetic algorithm significantly reduces computational
time and makes the computation expense acceptable; nevertheless,
it is still quite time consuming.

5 N and U Scattering Rates of Phonons
Different expressions for three-phonon scattering rates have

been adopted in the literature. Here we choose to use the expres-
sions given by Holland �3�. Even though the phonon scattering
rates given by Holland may not be the most physically sound, as
discussed in Ref. �22�, we choose them here because for bulk Si,
extremely good fitting has been achieved with these expressions.
In addition, since the most important improvement in the model-
ing process here from Ref. �15� is the introduction of the genetic
algorithm, it is reasonable to keep the Holland scattering rates to
see the effect of the genetic algorithm. The N and U scattering
rates for transverse and longitudinal acoustic phonons are given as

�L
−1 = BL�2T3 �29�

�TN
−1 = BTN�T4 �30�

�TU
−1 = �0 �� � �12�

BTU�2/sinh� ��
kBT� �� � �12�

� �31�

Equation �31� gives the inverse lifetime for longitudinal
phonons engaged in the N and U scattering processes. For trans-
verse phonons the U scattering processes do not begin until �
��12, where �12 is the transverse branch phonon frequency cor-
responding to q /qmax=0.5. qmax is the wave vector corresponding
to the maximum cutoff frequency of longitudinal phonons in the
first Brilliouin zone. For bulk Silicon, the maximum cutoff fre-
quency in the longitudinal acoustical branch is 12.3 THz, follow-
ing the experimental dispersion curve given by Brockhouse �23�.
The parameters BL, BTN, BTU in these equations are listed in Table
1.

When the structure dimension is reduced to the nanoscale, the
N and U scattering rates of phonons will be different from that in
bulk Si due to confinement effects. The N and U scattering rates in
nanowires must be evaluated from first-order perturbation theory
based on the phonon dispersion relation for nanowires. The pho-
non modes in Si nanowires include longitudinal, torsional, and
flexural modes. Following the approach used in Ref. �24� to treat
cylindrical acoustic waveguides with stress-free boundaries, dis-
persion relations for these three modes can be obtained from the
following equations:

�q2 − qt
2�2 �qdR�J0�qdR�

J1�qdR�
− 2qd

2�q2 + qt
2� + 4q2qd

2 �qtR�J0�qtR�
J1�qtR�

= 0

�32�

qtRJ0�qtR� = 2J1�qtR� �33�

J1�qdR�J1
2�qtR���qd,qt,q,R� = 0 �34�

Equation �32� applies to the longitudinal modes, Eq. �33� to the
torsional modes, and Eq. �34� to the flexural modes. In all equa-
tions q is the z �axial� component of the phonon wave vector, J0,
J1 are the ordinary Bessel functions, qd, qt are the transverse
wave-vector components of dilational and shear waves, and R is
radius of the nanowire. Relations between qd, qt, and q are

qq,t
2 =

�2

�d,t
2 − q2 �35�

where �d, �t are the sound velocities for longitudinal and trans-
verse acoustic waves in bulk Si, respectively. These are given by

�d
2 = �� + 2��/�

�t
2 = �/� �36�

in which �, � are the Lame constants, and � is the density. For
bulk Si, the sound velocities are �d=8.47�103 m/s and �t
=5.34�103 m/s, respectively. In Eq. �34� the function �
=��qd ,qt ,q ,R� is defined as

� = f1��
2 + f2���� + f3�� + f4�� + f5 �37�

where

f1 = 2��2 − �2�2

f2 = 2�2�5�2 + �2�

f3 = �6 − 10�4 − 2�4�2 + 2�2�2 + �2�4 + 4�4

f4 = 2�2�2�2�2 − �2 − 9�2� �38�

f5 = �2�− �4 + 8�2 − 2�2�2 + 8�2 − �4�

�� = �J0���/J1���

�� = �J0���/J1���

and

� = qd * R

� = qt * R �39�

� = q * R

For each value of q, the allowed qt and qd are found for each
phonon branch by selecting the applicable equation from Eqs.
�32�–�34� and simultaneously solving with Eq. �35� numerically.
The phonon dispersion relations for Si nanowires are then ob-
tained from
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�n = �d,t
�q2 + qd,tn

2 �40�

where the index n indicates the different allowed branches for a
given phonon mode and �n is the phonon frequency for the nth
branch of that mode.

The calculated dispersion relations for the three phonon modes
�longitudinal, flexural, and torsional� are shown in Figs. 1–3, re-
spectively, for a 10 nm diameter Si nanowire. In each mode, the
first five branches are given. In Fig. 1, the phonon group velocity
of the first longitudinal branch is between the phonon group ve-
locities of longitudinal and transverse acoustic phonons for bulk
Si. For small wave vector, the dispersion relation of the first
branch of the longitudinal phonon is the same as that of the lon-
gitudinal acoustic phonon for bulk Si. As the wave vector in-
creases, the phonon group velocity becomes smaller than that of
bulk LA phonon. The first torsional branch is the same as the
transverse acoustic phonon for bulk Si. However, the group ve-
locities for other torsional branches and flexural branches are all
below the TA mode for bulk Si, which will lead to reduced ther-
mal conductivity. Once the dispersion relation is obtained, the
phonon scattering rates can be evaluated according to N and U
scattering processes as described below.

It is well known that the momentum of phonons involved in the
N process is conserved. The N-scattering process redistributes the

momentum and energy, and prevents strong deviation of each
phonon mode from the equilibrium distribution. For N scattering
process, there are two mechanisms known as the Herring �25� and
Simons mechanisms �26�. The Herring mechanism suggests that
the relaxation frequency of the transverse phonons is determined
by the three-phonon scattering process involving one transverse
and two longitudinal phonons, i.e.,

T + L ↔ L �41�
Similar to formula �41�, the three-phonon scattering process

engaged in nanowire involving the torsional mode �or flexural
mode� and two longitudinal modes

T + L ↔ L �42�
Equation �42� means that one torsional phonon plus one longi-

tudinal phonons produces one longitudinal phonon or one longi-
tudinal phonon can decay into one transverse phonon and one
longitudinal phonon. The scattering rate can be described as

�TN
−1 = BTNT4�T �43�

The relaxation frequency of the longitudinal phonons in the
anisotropic continuum system is determined by the three-phonon
process according to Simons mechanism �26�, whereby either a
longitudinal phonon decays into two torsional �flexural� phonons
or two torsional phonons combine to form a longitudinal phonon

L ↔ T + T �44�

The N scattering rate of the longitudinal phonons can be written
as

�NL
−1 = BLT3�L

2 �45�
The Umklapp process leads to thermal resistance. From the

first-order perturbation theory, Klemens �1� gives the relaxation
rate for the U process for a thermal or intermediate-frequency
state q as

�U
−1 =

2�2�

3�2�v2vg
�i� j��i + � j��n��i� − n��i + � j���

qj

dS�

�46�

where � is the Grüneisen parameter, v is the sound velocity,
n��i� ,n��i+� j� are the equilibrium occupation of states qi, qi

+qj. For Si nanowires, the dispersion relations are depicted as in
Figs. 1–3. The relaxation rate of U process �46� can be approxi-
mated as

�U
−1 = �

q

8�2�

3�v2 �i� j��i + � j�������*�n��i� − n��i + � j��

�47�

where ����� guarantees that the energy conservation conditions
be satisfied, i.e.,

�� = �i + � j − �� = 0 �48�

Eq. �47� describes the relaxation rate of a combining U process,
i.e.,

q� i + q� j = q�� + G� �49�

where G� is the shortest reciprocal-lattice vector. qi, qj are the
interacting states with high frequency near the zone boundary.
vg= ����q�� /�q�� is the group velocity at ��=�i+� j in the longi-
tudinal mode in the principal direction. The factor 
qj

dS� is the
area of the momentum space of the interacting state qj with the
reference state qi. In order to obtain the scattering rate for the U
process at state of qi, all of the possible interacting channels must
be taken into account, then sum those scattering rates together.
However, at temperatures lower than the Debye temperature, the
lowest order branches are the most important branches. In order to

Fig. 1 Longitudinal phonon dispersion relations for 10 nm di-
ameter Si nanowire

Fig. 2 Flexural phonon dispersion relations for 10 nm diam-
eter Si nanowire

Fig. 3 Torsional phonon dispersion relations for 10 nm diam-
eter Si nanowire
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demonstrate the calculation procedure, only the first branches for
each of the three modes are taken into account as shown in Fig. 4.
This approximation neglects the populated phonons at higher en-
ergy level in the quasioptical branches. However, as shown in
Figs. 1–3, the lowest branches in each mode have the highest
phonon group velocities. Compared with previous work �27,31�,
this approximation will overestimate the energy transport at low
temperatures. Based on the Klemens two-step model �28�, Eq.
�46� can be simplified as �31�

�U
−1 =

2�2�

3��v2vg
�i� j��i + � j�rc

2 exp�− �� j/kBT� �50�

where

�
qj

dS� = �rc
2,rc = RC�G/2 − qi�/�G/2�,Rc = �/��2a� �51�

Here � j is the frequency gap between the two different modes as
shown in Fig. 4. The relaxation rate for bulk Si can be obtained in
the same procedure and the ratio between the two time scales can
be obtained approximately as

�U
−1,nano

�U
−1,bulk �

vg
bulk

vg
nano exp����T − � j�/kBT� �52�

where �T is the frequency gap between the longitudinal and trans-
verse modes in bulk Si phonon dispersions as shown in Fig. 4.
The superscripts bulk and nano stand for bulk material and nano-
wires in Eq. �52�. Equation �52� demonstrates that the Umklapp
scattering rate of nanowires is inversely proportional to the pho-
non group velocity and the frequency gap between different
branches in the nanowire. With decreasing phonon group velocity
and frequency gap between different modes, the Umklapp scatter-
ing rate increases greatly compared with the phonons scattering
rate in bulk material.

6 Numerical Results
The phonon transport in single Si nanowires was simulated us-

ing MC. Impurity scattering was neglected in the current simula-
tion since our primary interest in this paper is thermal conductiv-
ity at high temperatures, where impurity scattering is not as
significant. Additionally, in nanowires the boundary scattering is
usually strong enough to mask the impurity scattering. The cross
section of the nanowires is square with side length a. It is assumed
that the dispersion relations developed above for cylindrical
waveguides are applicable here when 2R=a. The main reason for
this is that we have a closed form expression for the dispersion of
round wires, which is easier to be included in the simulation. We
believe that this is acceptable because if we do not consider the
dispersion relation modification due to confinement, the boundary
simply provides boundary scattering, which limits the phonon
mean free path to be on the order of the wire diameter depending
on the selection of the specularity parameter. The real shape of the
nanowire in our simulation does not affect the simulation results.

In order to verify that the MC model correctly predicts phonon
transport, we first chose a simple problem: ballistic phonon trans-
port between the two ends of the nanowire. Ballistic transport
becomes important at low temperatures, where U processes are
frozen out and impurity and boundary scattering are negligible. In
this situation there is no thermal resistance and the “temperature”
remains constant along the sample length �13�

T4 = �TL
4 + TR

4�/2 �53�

Here TL, TR stand for the temperatures at the two ends of the
nanowire. The ballistic condition was realized in the MC simula-
tions by neglecting all scattering processes. The results from both
theoretical solution, Eq. �53�, and the simulations of a Si nanowire
with a total length of 500 nm and a=50 nm are shown in Fig. 5
for two different temperatures. The nanowire was divided into ten
cells along its length and the local “temperature” in each cell was
obtained by fitting the distribution to the Bose-Einstein distribu-
tion. Strictly speaking, temperature can only be defined in each
cell when local thermodynamic equilibrium is reached, which is
clearly not true for the ballistic case. For long enough simulations,
however, the hot and cold phonons traveling in opposite directions
are sufficiently averaged so that the numerical results in Fig. 5
�symbols� agree well with the theory �line�.

Bulk Si was also simulated to further verify the model. This
was done by setting the specularity parameter d=1, which means
that the nanowire surfaces are perfectly smooth and all the
phonons are specularly reflected. Since boundary scattering does
not contribute to thermal resistance in this case, the nanowire MC
model using the bulk Si phonon dispersion relation should yield
thermal conductivity values close to that of bulk Si at high tem-
peratures. However, at low temperature, the simulation results de-
viate from the experimental value due to the lack of boundary and
impurity scattering.

Figure 6 illustrates that this is indeed the case: The MC numeri-
cal results circles for a nanowire with d=1 agree well with the
experimental results for bulk Si �3� for temperatures greater than
25 K. The simulation results also agree well with recently reported
experimental data on enriched isotope silicon �22,29�. For tem-

Fig. 4 Dispersion relation for the lowest longitudinal, flexural,
and torsional branches of a 10 nm diameter Si nanowire

Fig. 5 “Temperature” distribution along the Si nanowire under
ballistic transport condition. TL, TR correspond to the tempera-
tures on the left and right ends of the nanowire.

Fig. 6 Temperature dependence of bulk Si thermal conductiv-
ity from MC simulation results
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peratures below 25 K, the thermal conductivity of bulk Si is domi-
nated by phonon-boundary scattering, and the numerical results
�not shown� approach infinity.

In order to demonstrate the advantage of the generic algorithm,
we applied the MC code to bulk Si without the genetic algorithm.
In this case, the momentum conservation of the N scattering pro-
cesses is removed, and the MC code is the same as that in Ref.
�15�. The simulation results are also shown in Fig. 6 as the tri-
angle marks. It is clear that without the conservation of momen-
tum for N processes, the simulation results give much lower val-
ues at high temperature. This is because without conservation of
momentum, the N process directly poses resistance to thermal
transport since only energy conservation is satisfied. It is well
known that the N process only contributes to the thermal resis-
tance indirectly by redistributing the phonons and restoring the
equilibrium distribution. So without a physically sound modeling
of the N process, the results deviate from the experimental value
for bulk Si.

During the simulation process, it is observed that the length
scale of the simulation domain may have an artificial effect on the
final simulation results over the temperature range from 25 K to
500 K. Especially at low temperatures, since the scale of the simu-
lation domain may be smaller than the phonon mean free path,
temperature jumps appear between the ends of the simulation cell
and the boundary walls. At high temperatures, the size of the
simulation domain is usually larger than the phonon mean path. In
this case, a nonlinear temperature profile arises due to the tem-
perature dependence of thermal conductivity. In order to get pre-
cise simulation results, two criteria should be satisfied: The effec-
tive thermal flux in each simulation cell should be nearly the
same, and the temperature profiles should be reasonably close to
linear. The profiles should not be expected to be completely linear,
since the thermal conductivity is temperature dependent. In order
to satisfy the two criteria, computation time should be selected to
be as long as possible for the system to reach steady state. In this
paper, to avoid undue computational burden, values roughly 20
times of the characteristic diffusion time were found sufficient to
satisfy the criteria. Time step is another factor affecting the simu-
lation results. It should be smaller than the smallest scattering
time scale to avoid missing a scattering process. Considering that
different simulation cell sizes and different temperatures are used,
the time step can be chosen based on the approximation that dur-
ing each time step, the distance traveled by the fastest phonons is
about one fourth the simulation cell. The choice of the simulation
domain size at different temperatures is also a formidable task.
The length of the simulation domain should be larger than the
longest phonon free path to completely remove the temperature
jump at the two ends. However, it is difficult to determine the
mean free path for each phonon. A trial-and-error process was
thus used to find the length scale of the simulation domain. For a
certain simulated temperature, the length of the simulated nano-
wire should meet the demands that the temperature profile re-
mains linear and no temperature jumps appear in the two ends.
For the thermal conductivity simulations reported here, the values
of the effective thermal flux in each cell were all within ten per-
cent of the averaged flux and the temperature profiles were essen-
tially linear. Finally, in order to further reduce noise effects on the
final simulation results, three different simulation runs were aver-
aged that differed only by the seed value used in the simulation’s
random number generator. Error analysis shows the difference be-
tween the three simulation runs are within five percent.

Figure 7 shows calculated and experimental thermal conduc-
tivities of Si nanowires of diameters 115 nm, 37 nm, and 22 nm.
The three solid lines represent MC simulation results calculated
using the dispersion relation for bulk Si, and the symbols repre-
sent experimental results from Ref. �16�. In the MC simulation
procedure, the impurity scattering and the boundary scattering are
all considered. The specularity parameter was calibrated to fit the
simulation result to the experimental data �16�. Its value was set to

0.5 based on several round tried simulations. The impurity scat-
tering parameter Bi, as shown in Table 1, was obtained using a
similar procedure. The parameters BN and BU were assumed the
same as those for bulk silicon. The MC simulation results agree
reasonably well with the experimental results for nanowires with
diameters 37 nm and 115 nm. The position for the peak value of
thermal conductivity for Si nanowires is displaced to higher tem-
perature compared with that for bulk Si, which is 25 K. This is
because for nanowires, boundary scattering is the dominant pho-
non scattering mechanism up to much higher temperatures.

Quite a few theoretical studies on the thermal transport in nano-
wires have been reported �30–37�. Several of them �30–34� are
theoretical investigations working on hypothetical model system
without comparison to experimental results. Those studies are try-
ing to disclose the effects of diffuse/specular boundary reflections,
ballistic/diffuse transport and scattering rate change due to phonon
dispersion changes in nanowires. More recent theoretical studies
�35–37� compared their modeling results with the experimental
data �16�. The theoretical results from those studies match the
experimental data reasonably well, similar to the present work, for
nanowires with diameters larger than 37 nm. Most of the studies
in the literature are based on closed form integration, which is not
as computationally expensive as the present study. However,
Monte Carlo simulation provides a more rigorous approach to the
phonon transport and has the potential to be applied to complex
geometry.

For the 22 nm diameter wire, the difference between the MC
simulation and the experimental results is significant. As dis-
cussed above, the phonon dispersion relation at this length scale
can differ significantly from that of the bulk and may be the rea-
son for the difference. In order to see if this is the case, the
nanowire phonon dispersion relations were used instead of bulk
phonon dispersion relations in the MC model. Phonon transport in
different diameter nanowires was simulated with different disper-
sion relations at 300 K �Fig. 8�. In Fig. 8, model 1 refers to results
obtained using nanowire phonon dispersion and model 2 refers to
results obtained using bulk silicon phonon dispersion relations. It

Fig. 7 Thermal conductivity of Si nanowires with different di-
ameters: MC simulation with bulk dispersion relation „lines…
and experiment „symbols…

Fig. 8 Nanowire thermal conductivity versus diameter at T
=300 K
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can be seen from the figure that for large diameter nanowires, the
results from different dispersion relations are nearly the same.
However, as the nanowire diameter decreases, the difference gets
larger and can be observed clearly. The thermal conductivity
evaluated from nanowire dispersion relations become significantly
smaller than that from the dispersion relation for bulk Si. The
maximum difference occurs for nanowires with a diameter be-
tween 10 nm to 20 nm. For even smaller diameter nanowires, the
difference gets smaller. The reason for this is not fully understood.
However, we believe that in this case the strong boundary scatter-
ing will prohibit phonon transport and dominate over any other
scattering events. This reduces thermal conductivities calculated
using both bulk and nanowire dispersion relations to nearly the
same value. The reason for smaller thermal conductivity from
nanowire dispersion relations may be from two sources. One is
that the phonon group velocity in nanowires is smaller than that in
bulk material. The other is that the phonon lifetime evaluated from
Eq. �47� is smaller than that obtained from the formula for bulk
material. With decreasing nanowire diameter, the frequency gap
between different branches decreases, which in turn causes the
increase of phonon Umklapp scattering rate, and hence reduces
the lattice thermal conductivity. Since simulations using nanowire
dispersion relations are very time consuming, a detailed calcula-
tion for the thermal conductivity of different diameter nanowires
spanning a broad temperature range has not yet been carried out.

7 Conclusion
A Monte Carlo method has been developed to simulate phonon

transport in nanowires. A genetic algorithm, which meets both
momentum and energy conservation requirements for the simula-
tion system, was adopted to model the phonon-phonon scattering
process. Phonon dispersion relations for bulk Si and Si nanowires
were employed to simulate nanowire thermal conductivity. Simu-
lation results using the bulk Si dispersion relation agree reason-
ably well with our experimental results for nanowires with a di-
ameter larger than 37 nm. Simulation results using the nanowire
dispersions show significant differences compared with those us-
ing the bulk dispersions for nanowires with a diameter between 10
nm and 20 nm. These differences were attributed to the phonon
group velocity reduction and the phonon lifetime reduction due to
strong phonon-phonon scattering derived from nanowire disper-
sion relations.
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Accurate Boundary Element
Solutions for Highly Convective
Unsteady Heat Flows
Several recently developed boundary element formulations for time-dependent convective
heat diffusion appear to provide very efficient computational tools for transient linear
heat flows. More importantly, these new approaches hold much promise for the numerical
solution of related nonlinear problems, e.g., Navier–Stokes flows. However, the robust-
ness of these methods has not been examined, particularly for high Peclet number re-
gimes. Here, we focus on these regimes for two-dimensional problems and develop the
necessary temporal and spatial integration strategies. The algorithm takes advantage of
the nature of the time-dependent convective kernels, and combines analytic integration
over the singular portion of the time interval with numerical integration over the remain-
ing nonsingular portion. Furthermore, the character of the kernels lets us define an
influence domain and then localize the surface and volume integrations only within this
domain. We show that the localization of the convective kernels becomes more prominent
as the Peclet number of the flow increases. This leads to increasing sparsity and in most
cases improved conditioning of the global matrix. Thus, iterative solvers become the
primary choice. We consider two representative example problems of heat propagation,
and perform numerical investigations of the accuracy and stability of the proposed
higher-order boundary element formulations for Peclet numbers up to 105.
�DOI: 10.1115/1.2035109�

Introduction
Development of efficient solvers for Navier–Stokes flows at

high Reynolds numbers has been an area of constant interest for
the past half century. Great progress has been made toward this
objective, especially during the last two decades. Well-established
and sophisticated codes based upon finite difference methods
�FDM�, finite volume methods, and finite element methods �FEM�
are now routinely used to solve complex flows governed by the
nonlinear Navier–Stokes equations in two and three dimensions.
As is observed in the literature, the progress in the area of com-
putational fluid dynamics comes from two primary sources: The
growth of computational power due to progress in hardware, and
the development of novel solution algorithms. If the computa-
tional fluid dynamicists were to rely solely on the former source,
a straightforward extrapolation of the growth of the computational
resources with the current rate would reveal that it would take
many years or even decades before the direct numerical simula-
tions �DNS� of turbulent flows of any practical importance would
be feasible using existing computational methods. Therefore, the
development of novel efficient computational algorithms for the
Navier–Stokes equations has been and will be imperative in the
foreseen future.

It is well known that the major difficulty in numerical simula-
tions of Navier–Stokes flows arises due to the non-linear convec-
tive term. This issue becomes of paramount importance for highly
convective flows, when the Reynolds number exceeds 104. These
flows are subject to formation of zones with very sharp gradients,
e.g., boundary layers, that are extremely difficult to resolve. The
difficulties are even more prominent when these zones are moving
in space. The use of standard central differences or Galerkin for-

mulations for FDM and FEM, respectively, results in nonphysical
oscillatory numerical solutions when the local mesh-based Rey-
nolds number exceeds 2, i.e., Reh�2. Consequently, it is manda-
tory to introduce an upwinding for the convective term. Although
this alleviates the appearance of wiggly solutions, the upwinding
may lead to excessive numerical diffusion and/or dispersion. The
numerical error due to large artificial diffusion and dispersion
should, of course, be avoided by all means when modeling turbu-
lent flows using DNS. There, the numerical diffusion may simply
overwhelm the turbulent nature of the flow.

In order to reduce numerical diffusion and dispersion, many
upwinding methods have been proposed. Among them, the higher-
order upwinding methods �QUICK, SUPG, GLS, etc.� are of pri-
mary interest owing to low intrinsic numerical error �1–4�. Devel-
oped primarily using one-dimensional or velocity-mesh
orthogonality assumptions, these algorithms perform well only ei-
ther for one-dimensional problems or when the flow velocity is
aligned with the mesh. Unfortunately, extensions to the multidi-
mensional cases are not straightforward and the performance of
the higher-order upwind methods in multidimensions is usually
much less than in one-dimensional problems. Moreover, the accu-
racy degrades significantly if irregular meshes are introduced for
complex geometries, or the meshes are not streamlined with the
flow �3�.

Owing to recent studies �5–19�, it has become quite apparent
that the use of convective fundamental solutions within the
boundary element framework provides an automatic upwinding in
the most natural way for the entire range of Reynolds �or, Peclet�
number, from zero to infinity. Thus, no artificial upwinding is
required, even when the boundary element mesh is not aligned
with the flow direction. Despite the obvious attractiveness of the
convective boundary element methods, a proper numerical imple-
mentation of the convective fundamental solutions appears ex-
tremely difficult, even for a scalar problem.

Currently, most of the numerical implementations of the con-
vective boundary element method �BEM� algorithms are for
steady-state problems �5–12�. We note that the BEM formulations
for steady-state convective diffusion with uniform flow velocity

1Author to whom correspondence should be addressed: M. M. Grigoriev, Depart-
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involve no volume integration, and, based on our personal expe-
rience, are significantly easier to implement than for unsteady
problems using time-dependent kernels. Of course, straightfor-
ward extensions of the steady-state formulations to unsteady prob-
lems are possible if one considers a finite-difference approxima-
tion for the time derivative. However, the combination of BEM
with the finite differences leads to a time-marching algorithm of
the same order of convergence with respect to time step sizes as
the order of finite differences. Meanwhile, the use of time-
integrated kernels results in an algorithm which is one order
higher than the underlying time functions. For example, linear
time functions result in second-order convergence in time �20�,
while a two-level finite differencing in time provides only the
first-order algorithm. Therefore, the combination of BEM with
temporal finite differences appears less accurate than the use of
time-dependent kernels implemented within the BEM framework.

Accurate numerical implementations of the time-dependent
convective kernels benefit from closed-form time integrations
over the finite time interval. However, due to singularity of the
kernels, closed-form integrations are possible only for odd-
dimensional problems, i.e., in one and three dimensions. For two-
dimensional formulations, these integrals are not available in
closed form due to the complexity of the kernels. Owing to the
inherent difficulties in the numerical implementations of the time-
dependent convective kernels, there have been only a few bound-
ary element studies on unsteady convective diffusion problems
using time-dependent convective kernels �13–19�. Grigor’ev �14�
presented a linear time step BEM formulation for transient con-
vection diffusion and Burgers’ equations, and provided some
closed-form time integrals for the one-dimensional case. Shi and
Banerjee �13� presented time-integrated two-dimensional kernels
in series form. Subsequently, Lim et al. �15� reported a numerical
implementation of these time-integrated kernels for Peclet num-
bers as high as Pe=2000. However, the data presented in Ref. �15�
suggest that a more thorough numerical implementation is needed.

Recently, the current authors developed BEM �16–18� for un-
steady convective diffusion problems using the time-dependent
convective kernels by Carslaw and Jaeger �21�. The authors uti-
lized linear, quadratic, and quartic time interpolation functions
�20� for a temporal discretization of the boundary integral equa-
tion both in one and two dimensions. For the one-dimensional
formulation, the transient convective kernels g�x−�� and f�x−��
were integrated analytically over the finite time intervals for all
time interpolation functions and complete sets of time-integrated
kernels were presented. For two dimensions, a series representa-
tion for the time-dependent kernels was introduced in Ref. �17�.
The authors provided time-integrated formulae for linear, qua-
dratic, and quartic time interpolation functions. Although the im-
plicit time-marching formulation utilized in Refs. �17,18� did not
impose any restrictions on the time step size �t, the applicability
of the numerical algorithm was restricted to the following time
step sizes:

�t � �tc =
4�

V2 �1�

where V is the characteristic velocity of the flow, and � is the
diffusivity. The use of time steps less than the critical time step
size �tc ensured fast convergence of the series introduced for the
time-dependent convective diffusion kernels. Although larger time
steps �t��tc were possible, these computations required more
terms in the series to attain the desired level of accuracy. Conse-
quently, the efficiency of the BEM deteriorated and, oftentimes,
the numerical algorithm failed to converge if the time steps were
too large. In a brief communication �19�, this boundary element
formulation was extended to the higher Peclet number by allevi-
ating the constraint Eq. �1� through a combination of analytical
and numerical integration over time. Here, we provide further
enhancements relating to spatial integration of time-integrated
convective kernels by refining the definition of domains of influ-

ence. This enables us to perform detailed numerical investigations
of the accuracy and stability of the proposed method. To the best
of our knowledge, this is the first contribution in the literature to
study these issues within the context of BEM formulations for
unsteady convective flows. Although the problems considered in
this paper are limited to constant flow velocities, all of the meth-
odology developed here is directly applicable within boundary
element formulations for variable velocity transport problems us-
ing, for example, a poly-region approach �12�.

In the following section of the paper, we present the time-
recurring boundary element formulation using the convective fun-
damental solutions. Temporal discretization is examined in the
next section, where we introduce linear, quadratic, and quartic
time interpolation functions and discuss the algorithms for time
integration of the kernel-temporal shape function products. Then,
we consider linear, quadratic, and quartic boundary elements as
well as bilinear, biquadratic, and biquartic volume cells for the
spatial discretization of the semidiscrete boundary integral equa-
tion. In that section, we also discuss a very efficient algorithm to
numerically evaluate the coefficients of the discrete boundary in-
tegral equation. Our approach involves the definition of the do-
mains of kernel influence associated with surface and volume in-
tegrals. Thus, we restrict integration of the time-integrated and
instantaneous kernels only over the parts of boundary elements
and volume cells, respectively, that are influenced by the kernels.
This facilitates a robust and accurate boundary element integration
procedure and dramatically improves the efficiency of the convec-
tive time-dependent BEM formulations especially for high Peclet
number flows. Here, we note that the definitions for the influence
domain due to time-integrated kernels presented in this paper are
different from those adopted in Ref. �17�. We emphasize that the
influence domains tend to the steady-state counterpart �22� as
�t→�.

In order to investigate the performance of these new higher-
order unsteady boundary element formulations, we consider two
example problems in the final section. The first problem involves
propagation of a thermal disturbance in a square domain, while
the second investigates the time and space propagation of tem-
perature fronts. Although analytical solutions are available for
both problems, the problems appear to be extremely challenging
owing to very sharp variations of the temperature in both time and
space.

Governing Equation and Boundary Integral Formula-
tion

We consider the time-dependent transport of heat due to con-
vective diffusion as governed by the following equation:

�T

�t
+ vi

�T

�xi
= �

�2T

�xi�xi
�2�

In Eq. �2�, t is time, xi is the Eulerian coordinate, vi is the velocity
of the flow, T is the temperature, and � is the diffusivity. Let us
introduce nondimensional temperature

T̃ =
T − Tref1

Tref2
− Tref1

velocity ṽi=vi /U, time t̃=Ut /L, and coordinate x̃i=xi /L. Here, U
is the characteristic velocity of the flow, L is the specific length of
the domain, while Tref1

and Tref2
are lower and upper reference

temperatures of the media, respectively. Now, we rewrite Eq. �2�
to the following form:

�T̃

�t
+ ṽi

�T̃

�x̃i

=
1

Pe

�2T̃

�x̃i�x̃i

�3�

where Pe=UL /� is the global Peclet number. We shall utilize only
nondimensional variables in this study, however we shall omit the
tilde in the notations for the sake of brevity.
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Equation �3� governs transient convective heat diffusion for
time t�0 in domain � bounded by the surface �. Both tempera-

tures T̄�x , t� on x��T and normal fluxes Q̄�x , t� on x��Q may be
specified as Dirichlet and Neumann boundary conditions, respec-
tively. Note that �T��Q=0 and �T��Q=�, where the surface �
bounds the computational domain �. In addition to the boundary
conditions, initial conditions must be specified as T0�x�=T�x ,0� at
t=0 for x��.

The corresponding integral form of the boundary value problem
can be written as follows:

c���T��,	� =�
�

T�x,0�g�x − �,	�d��x�

+�
0

	�
�

�T�x,t�f�x − �,	 − t� + Q�x,t�


g�x − �,	 − t� + T�x,t�g�x − �,	 − t�vn�d��x�dt

�4�

In Eq. �4�, 	 is time when the solution is desired, vn=vini�x� is the
velocity normal to the boundary, ni�x� is the unit outward normal
to the surface ��x�,

Q�x,t� = −
1

Pe

�T�x,t�
�n

is the normal heat flux due to diffusion, � stands for the colloca-
tion point ����x�, and

g�x − �,	 − t� =
H�	 − t�Pe

4��	 − t�
exp�−

sisi

4�	 − t�
Pe	 �5�

is the free-space single-layer kernel obtained by Carslaw and Jae-
ger �21� for two-dimensional problems. The double-layer kernel
can then be given as follows:

f�x − �,	 − t� =
1

Pe

�g�x − �,	 − t�
�n

= −
sini

2�	 − t�
g�x − �,	 − t�

�6�

Now in Eqs. �5� and �6�, si=xi−�i+vi�	− t� is the convected dis-
tance between field and source points, and H�	− t� is the Heavi-
side step function. The geometric function c���=0.5 when � is on
a smooth portion of the boundary and c���=1 when � lies inside
the domain �.

Equation �4� is an integral representation of the governing time-
dependent convective diffusion Eq. �3� that provides the tempera-
ture of the media at any point at any time 	�0. The surface
integral in Eq. �4� involves Riemann convolutions for boundary
temperatures and normal fluxes. The volume integral in Eq. �4�
represents an effect of the initial temperature distribution in the
domain �.

In this paper, we consider a time-stepping procedure based
upon recurring initial conditions �20�. This approach is more ap-
propriate for further extension to the nonlinear problems of fluid
dynamics than the time convolution approach presented by Dar-
gush and Banerjee �23� which allows one to consider only surface
integrals in the boundary integral equation �4� for any initial tem-
perature distributions satisfying the steady convective diffusion
equation.

Temporal Discretization

Time-Discrete Integral Equation. Solutions to integral Eq. �4�
are sought for the time domain t� �0, tmax� at any point in space
x��. Consequently, the time domain is subsegmented into N
equal increments of size �t

tm =
m

N
tmax = m�t, m = 0,1, . . . ,N

This facilitates the recurring initial condition formulation. Then,
each increment �tm−1 , tm� is subdivided into pt equal-sized subin-
crements. We note that pt is the order of time interpolation func-
tions utilized in this paper, i.e., pt=1 for linear, pt=2 for qua-
dratic, and pt=4 for quartic functions. The boundary integral Eq.
�4� may then be written for any time t̂� �tm−1 , tm� in the form:

c���T��, t̂� =�
�

T�x,tm−1�g�y, t̂ − tm−1�d��x�

+�
tm−1

t̂ �
�

�T�x,t�f�y, t̂ − t� + Q�x,t�g�y, t̂ − t�

+ T�x,t�g�y, t̂ − t�vn�d��x�dt �7�

for m=1,2 , . . . ,N. In Eq. �7�, y=x−�. Since the initial condition
is known at t0, we advance to the time level t1, and obtain a BEM
solution at any point ��� at time t1. Now we use T�x , t1� as an
initial condition in Eq. �7� to advance to the next time level t2 and
so on, until we reach time tN= tmax.

Now we approximate a time variation of boundary temperature
T�x , t� and heat flux Q�x , t� via linear, quadratic and quartic inter-
polation functions presented in Ref. �20�. A general time interpo-
lation can be given as follows:

��x, t̄� = 
��t̄������x� �8�

Here, relative backward time is defined as t̄= �tm− t� /�t, and sum-
mation over index �=0,1 /4 ,1 /2 ,3 /4 ,1 is performed. Linear,
quadratic, and quartic time interpolation functions 
��t̄� can be
found in Ref. �20�. In Eq. �8�, �����x� with �=0,1 /4 ,1 /2 ,3 /4 ,1
stands for either temperature T��� or flux Q��� at time t= tm−1
+��t.

We substitute Eq. �8� into boundary integral Eq. �7� and then
write the generalized integral form of convective diffusion trans-
port as follows:

TA�k� · � · R�k�
T + �Q + Tvn�A�k� · � · P�k�

T = T�0�g�0� �9�

Here, T and Q are temperature and heat flux vectors, subscript
k=0,1 /4 ,1 /2 ,3 /4 ,1 represents the collocation time level, and
matrices A�k� and � are defined as in Ref. �20�. Components of the

vectors P�k�
T and R�k�

T in Eq. �9� are given by

Pi�y,�� =
Pe

4�
exp
−

rV cos �

2
Pe�P̂i�y,�� for i = − 1,0,1,2,3,4

�10�

and

Ri�y,�� = −
yjnj

2
Pi−1�y,�� −

Vjnj

2
Pi�y,��, for i = 0,1,2,3,4

�11�

In Eq. �10�, r2=yiyi, V2=vivi, � is the angle between the radius
vector yi and the velocity of the media vi, and

P̂i�y,�� = 
a

b
�i�

0

�/tm

ti−1��d,t�dt �12�

Here, �=k�t stands for the different time levels, a2=r2Pe/4, b2

=V2Pe/4, tm=a /b, and the integrand is given by

��d,t� = exp
−
d

t
− td� �13�

with d=ab.
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Time-Integrated Kernels. Unfortunately, the closed-form inte-
gration of Pi�y ,�� has not been possible for the two-dimensional
formulation. We should note that, due to singularity of the time-
dependent kernels in Eq. �10� as t→0, the analytical time integra-
tion is mandatory in order to develop efficient and accurate time-
dependent BEM formulations.

Analysis of the kernel ��d , t� reveals that the function is always
non-negative, and it involves only a single maximum

�m�d,1� = exp�− 2ab� �14�

at t=1.
Figure 1 shows the variation of the kernel ��d , t� for different

values of d. For small d, notice that the function changes dramati-
cally at t→0. As the distance r from the source point to the
current field point increases, the kernel response becomes more
concentrated at the time t=1. We should note that although func-
tion ��d , t� itself involves no singularity with respect to time t, the
integrand ti−1��d , t� in Eq. �12� results in singular behavior at
t→0 for i=−1 and i=0 due to multiplier ti−1.

Let us now split the integral �12� into two parts to integrate
ti−1��d , t� over the time interval t� �0,� / tm�:

P̂i�y,�� = P̂i
s�y,ts� + P̂i

n�y,�� �15�
In Eq. �15�, the singular and nonsingular parts are given by

P̂i
s�y,ts� = 
a

b
�i�

0

ts/tm

ti−1��d,t�dt �16�

P̂i
n�y,�� = 
a

b
�i�

ts/tm

�/tm

ti−1��d,t�dt �17�

respectively. In Eqs. �16� and �17�, time ts will be a smaller value
between the actual time step � and the critical time step �tc de-
fined by Eq. �1�, i.e.

ts = min��,�tc� �18�
Notice that the time-integration algorithm presented in Ref. �17�
can readily be employed for integral �16�. Meantime, for the non-

singular part of the time integral P̂i
n�y ,��, we introduce an adap-

tive algorithm for numerical integration and perform evaluation of
the time integrals with any desired level of accuracy.

In order to accomplish the integration of integral �17� to any
desired level of accuracy for a wide range of parameters d, includ-
ing d�1 and d�1, we first split the numerical integration into
two time intervals t� �ts / tm ,1� and t� �1,� / tm� as follows:

P̂i
n�y,�� = 
a

b
�i��

ts/tm

1

ti−1��d,t�dt +�
1

�/tm

ti−1��d,t�dt	
�19�

The integral over the first nonsingular time interval in Eq. �19� can

further be subsegmented into K̄ nonuniform subintervals

	̃k =
def

�t̃k−1, t̃k�, k = 1,2, . . . ,K̄ �20�

Here, t̃0= ts / tm, t̃K̄=1, and t̃k−1� t̃k for all k=1,2 , . . . , K̄. The val-
ues of t̃k are directly evaluated from a set of predefined ratios

�̃k =
��d, t̃k�
��d,1�

, k = 1,2, . . . ,K̄ �21�

using the following

t̃k = 1 −
ln �̃k + �ln �̃k�ln �̃k − 4d�

2d
�22�

We should note that the predefined values �̃k are distributed non-
uniformly to accurately capture the variation of the first integral in
Eq. �19� via the sum of integrals over each time interval 	̃k:

�
ts/tm

1

ti−1��d,t�dt = 

k=1

K̄ �
t̃k−1

t̃k

ti−1��d,t�dt �23�

Integrals over time intervals 	̃k are nonsingular and can be evalu-
ated accurately using the standard Gauss quadrature.

The second integral in Eq. �19� can be evaluated in a similar
way considering that t̃0=1, t̃K̄=� / tm, and t̃k−1� t̃k.

The algorithm presented above allows evaluation of integral
�19� with any desired level of accuracy for all Peclet numbers
considered in this paper. We note that the number of Gauss points
in the quadrature formula, as well as the number of time intervals

K̄, may vary depending on the Peclet number as well as the pa-
rameter d.

Spatial Discretization
We divide the boundary � into a number of boundary elements

�l and introduce linear, quadratic, and quartic interpolation func-
tions �20� to represent a spatial variation of the temperatures and
normal fluxes over boundary elements at any time level k. Since
the boundary integral equation �9� involves a volume integral due
to an initial condition, we segment the domain of interest ��x�
into a number of volume cells �e�x� and introduce bi-linear, bi-
quadratic and bi-quartic interpolation functions �17� to represent a
variation of the initial temperature over the volume cells.

Boundary Element Integration. The following surface inte-
grals over the boundary element �l �16,17�

��
�����,t� =�

�l

P��y,t�N����d��x� �24�

and

��
�����,t� =�

�l

R��y,t�N����d��x� �25�

are needed for �=0,1 ,2 ,3 ,4 and �=1,2 ,3 ,4 ,5. We notice that
the time-integrated kernels P��y , t� and R��y , t� are significant
only at the proximity of the convected �or, fictitious� source point
�i

�c�=�i−vit. Meanwhile, the response due to the concentrated
point source propagates upstream and remains significant for very
large distances r. For large time steps t→�, the time-integrated
kernel responses coincide with the steady-state kernels �22�:

Fig. 1 Variation of the kernel �„d , t… with respect to time
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gst�x − �� =
1

2��
exp
−

yivi

2�
�K0
 rv

2�
� �26�

and

fst�x − �� = −
1

4��
�niviK0
 rv

2�
� + yini

v
r

K1
 rv
2�

��exp
−
yivi

2�
�

�27�

In Eqs. �26� and �27�, K0�·� and K1�·� are modified Bessel func-
tions of the second kind of order zero and one, respectively.

Next, we establish the domain of influence for P��y , t�, R��y , t�,
and perform integration only within that domain. As the responses
due to time-integrated kernels propagate upstream with the speed
vi, it is advantageous to utilize the steady-state kernels to track the
responses of the time-integrated kernels in time. First, we intro-
duce a local coordinate system aligned with the convective veloc-
ity vector as shown in Fig. 2. Then we assume, for the sake of
simplicity, that the time-integrated kernels have no effect on the
downstream part of the influence domain beyond the current lo-
cation of the convected source point �i

�c� for t�0. Thus, the entire
influence due to the time-integrated kernels for x���c� can be
described by the domain of influence due to the steady-state ker-
nels gst�x−�� and fst�x−��.

According to Fig. 2, we distinguish three domains of influences
owing to time-integrated kernels. Domain 1 represents a down-
stream influence for x1�0 due to the steady-state kernel and will
not change as the time progresses t�0. Domain 2 is also con-
trolled by the steady-state kernel, and its size in the streamwise
direction is limited within x� ���c� ,0�. Following the approach
presented in Ref. �22�, for the Domains 1 and 2 governed by the
steady-state kernels, let us denote

�̄ =
rv
2�

�28�

We intend to limit the domain of influence �s�y� bounded by the
contour �s�y� to the values gst�x−����s and fst�x−����s, where
�s represents a small tolerance for surface integrals, e.g., �s
=10−10, to ensure the contribution of the convective kernels from
outside the domain of influence is negligible. This requires con-
sideration of very large values of �̄�1 for the points x��s�y�,
where

lim
�̄→�

K0��̄�
K1��̄�

= 1 �29�

Moreover, the evaluation of contour �s�y� does not require a pre-
cise evaluation of the kernel functions. Thus, the contour of the
kernel influence �s�y� can be estimated as follows:

exp�− �̄
�K0��̄� = �s�y� �30�

Influence Domains 1 and 2 are then bounded by the curve

�s�y� = �s �31�
Finally, Domain 3 of the kernel influence shown in Fig. 2 is

governed by the instantaneous kernels g�y , t� and f�y , t�. Using a
frame of reference ��c� translating upstream with the kernel g�y , t�,
we can show that contours of constant values of

ḡ�y,t� =
g�y,t�

g�− vt,t�
= exp�−

�x1 − �1
�c��2 + �x2 − �2

�c��2

4t
Pe� �32�

are concentric circles of radius rs

rs
2 = −

4t

Pe
ln�ḡ�y,t�� �33�

Thus, Domain 3 will be a semicircle with the center at ��1
�c� ,�2

�c��
and radius rs=�s. Domains 1, 2, and 3 will then form a domain of
influence with the closed contour �s�y�.

The integrations over the boundary elements in Eqs. �24� and
�25� are then performed only within the domain �s�y� associated
with the source point �. No integration is needed if boundary
element �l�x� lies outside the domain �s�y�, i.e.,
�l�x���s�x−��=0.

Notice that when the collocation point � does not lie on the
boundary element �l�x�, the time-integrated kernels P��y , t� and
R��y , t� involve no singularity and hence can be evaluated using a
standard Gaussian quadrature. However, to perform the integra-
tion in a more efficient way, we introduce Ns contours of preset
levels

�s
�i� � �s

�i�, i = 1,2, . . . ,Ns and �s
�Ns� = �s �34�

and segment the boundary element �l�x� via these contours. Or,
alternatively, the contours can be evaluated directly from the
outer-level contour via the following nonuniform scaling

r�i���� = �ir
�Ns����, i = 1,2, . . . ,Ns − 1 �35�

where 0��i�1, and r�Ns���� is the distance from the source
point � to the outer-level contour �s

�Ns�. In the former approach,
difficulties arise in specifying the preset level contours to attain a
desired clustering of the segments for different combinations of t
and Pe as

lim
y→0

�s�y� → � �36�

Thus, we utilize the latter approach throughout the study. Note
that the parameter �i is much less sensitive to the Peclet number
than the preset levels in the former approach. For both approaches
considered above, the nonuniform clustering of the segments al-
lows very efficient and accurate integration over the nonsingular
boundary element �l influenced by the transient kernel. A
variable-order Gaussian quadrature is utilized for every segment
of interest to ensure a high level of accuracy.

However, when the collocation point � lies on the straight
boundary element �l, the evaluation of the boundary integrals �24�
and �25� involves a singularity as y→0. Notice that the contribu-
tion due to kernel P−1�y , t� vanishes since yini=0 for the singular
boundary element segment. Thus, the only log-type singularity is
due to time-integrated kernel P0�y , t�, and all other terms in Eqs.
�24� and �25� for ��1 result in nonsingular integrals. Moreover,
a boundary element integral involving P0�y , t� is singular only

Fig. 2 Domain of influence due to time-integrated kernel origi-
nated at point O
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when the shape function N���� coincides with the local number of
the collocation node �. Otherwise, the integral is non-singular due
to the following property of the shape function

N����y����� = �1, if � = �

0, otherwise
� �37�

The evaluation of the nonsingular integrals is similar to the algo-
rithm described above.

In order to remove the singularity from the integral ��
����� , t�,

we rewrite integral �24� to the following form:

�
�l

P0�y���,t�N����d��x� =�
�l

P0�y���,t��N���� − 1�d��x�

+�
�l

P0�y���,t�d��x� �38�

Notice that the first integral on the right-hand side of Eq. �38� is
no longer singular and can be integrated using the approach out-
lined above. The second integral in Eq. �38� can be split into
singular and nonsingular parts using Eqs. �10� and �12� as follows:

�
�l

P0�y���,t�d��x� =
Pe

4���
�l

exp
−
rV cos �

2
Pe�P̂0

s�y,ts�d��x�

+�
�l

exp
−
rV cos �

2
Pe�P̂0

n�y,ts�d��x�	
�39�

We notice that the nonsingular time-integrated kernel P̂0
n�y , ts� in-

volves no singularity, and thus the second boundary element inte-
gral in Eq. �39� can be evaluated in a standard way using a Gauss-
ian quadrature with subsegmentation. Evaluation of the first
integral in Eq. �39� can be performed in a way outlined in Ref.
�17�.

Volume Cell Integration. Although integration of the instanta-
neous convective kernel over the volume cells involves no singu-
larity, this step also requires careful attention for moderate and
high Peclet numbers due to the nature of the g kernel. Figures 3�a�
and 3�b� show an upstream propagation of the convective kernel
g�y , t� for the diffusivity �=10−3 and �=10−5, respectively. Here,
the source is located at the point �1=1 and �2=1/2. The convec-
tive velocity of the media is not aligned with the Cartesian coor-
dinates and is defined as follows: v1=1, v2=1/2. Notice that the

Fig. 3 Surface plots of the instantaneous convective diffusion g kernel: „a… �=10−3; „b… �=10−5. Source point located
at �i= „1,0.5…, velocity of the media vi= „1,0.5….
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bell-shaped response is symmetric with respect to the rotated axis
of symmetry translating upstream with the speed −vi. When the
diffusivity of the media is relatively large �Fig. 3�a��, the kernel
decays quickly due to large diffusion. As the diffusivity � reduces,
the response becomes extremely localized around the axis of sym-
metry owing to the dominance of convection over the diffusion
processes �Fig. 3�b��. Thus, it becomes mandatory to develop an
integration algorithm that tracks the propagation of the transient
convective kernel. Obviously, a straightforward integration of the
kernel over volume cells would be extremely inefficient, espe-
cially for high Peclet numbers �Fig. 3�b��.

Here, we introduce the domain of influence �v�y� for the in-
stantaneous convective kernel g�y , t� at the current time level t.
The contribution of the kernel g�y , t� is significant only within the
domain of influence �v�y�, whereas the kernel is negligible out-
side of it. The domain of influence is bounded by the contour
satisfying the following

ḡ�y,t� = �v �40�

Here, �v=10−10 is a small parameter to ensure the kernel is
significant only within the domain of influence, and the
transient convective kernel is scaled using Eq. �32� to provide
0� ḡ�y , t��1. Recall that the contours of constant values of the
instantaneous g kernels are concentric circles of radius rs defined
by Eq. �33�. Therefore, the influence domains due to the g�y , t�
kernel will be a set of circles propagating upstream from the
source point �i with the speed −vi as shown in Ref. �17�. Notice
that the center of these circles coincides with the axis of
symmetry.

It must be emphasized that the integration over a volume cell
�e is performed if any part of the volume cell is inside the domain
of influence �v�y�:

�e � �v�y� � 0 �41�

Otherwise, no integration over �e is needed. If the volume cell is
influenced by the instantaneous g kernel, we introduce a grid in
polar coordinates �r ,
� so that the point of origin coincides with
the axis of symmetry �17�. Angular segmentation is uniform with
the increment �
. For the radial segmentation, we introduce Nv
preset levels for the scaled kernel ḡi�y , t�

�v
�i� � gi�y,t� � 1, i = 1,2, . . . ,Nv and ḡNv

�y,t� = �v �42�

Here, the radius of each circular level ḡi�y , t� is evaluated directly
from Eq. �42�. Note that the outer-level circle ḡNv

�y , t� is the
boundary of the kernel influence.

Generally, the volume cell �e is not aligned with the segmen-
tation grid and, thus, some of the grid segments generated in the
polar coordinate system �r ,
� require a volume integration only
over the parts that belong to the volume cell. For the sake of
simplicity in evaluating the intersections between the influence
domain and volume cells, the circular domains are replaced with
polygons �17�. Note that the volume integrals are evaluated using
a standard Gaussian quadrature. Similar to the boundary element
integration, we utilize a variable order of Gaussian quadrature for
every volume segment of interest to ensure a high level of accu-
racy.

Assembly and a Matrix Solution. The BEM presented in this
paper leads to the following set of linear equations

Ax = b �43�

In Eq. �43�, x is the generalized vector of unknown boundary
temperatures and heat fluxes, b is the vector due to known bound-
ary temperatures and heat fluxes, and A is a global matrix which
is sparse due to the nature of the convective kernels. The size of
the global matrix for the two dimensional problem considered
here can be as large as 25,000 resulting in over 10 million nonzero

entries.
As shown in the following section, the sparsity of the global

matrix increases dramatically with an increase of the Peclet num-
ber. The nonzero elements of the matrix are clustered around the
main diagonal, while off-diagonal elements decay rapidly or are
virtually zero for the entire matrix. In this paper, we utilize the
preconditioned biconjugate gradient method �BCGM� for sparse
linear systems presented by Press et al. �24�. We should note that
the use of the main diagonal as a preconditioner results in a stable,
accurate, and efficient solution algorithm for Peclet numbers Pe
�105. However, when the Peclet number exceeds 105, the BCGM
sparse solver has been unable to converge for some particular
combinations of mesh discretizations and physical time ti. This
problem will be discussed in the next section in more detail. Here,
we merely state that, for these particular cases of the iterative
solver failure, we have utilized a direct sparse solver developed by
�sterby and Zlatev �25�.

Numerical Results
The numerical algorithm described above has been imple-

mented as a C�� code for the UNIX environment. We investi-
gate the performance �accuracy and robustness� of the proposed
BEM for linear, quadratic, and quartic functions in time and
space. Here, we consider two time-dependent problems of heat
propagation in a steady uniform ambient flow. Both problems un-
der consideration possess exact solutions, thus making it possible
to obtain numerical errors at any point x�� at any time t
� �0, tmax�. Note that, in these problems, the velocity of the flow is
not aligned with the coordinate system to allow more thorough
tests for the BEM formulation. We emphasize that both examples
lead to very steep thermal fronts at high Peclet numbers consid-
ered in this study and, thus, offer great challenges for any com-
putational methodology.

Example Problem 1. Let us first consider the unsteady convec-
tive heat diffusion in the unit square �x1 ,x2�� �0,1�
 �0,1� with
the following exact solution:

Tex�x1,x2,t� =
1

1 + t
exp�−

�x1 − t + 1/4�2 + �x2 − t/2�2

4��1 + t� 	 �44�

The example problem represents a time propagation of a thermal
disturbance in a unidirectional flow with the velocity v1=1 and
v2=1/2 not aligned with the coordinate system. The disturbance
originates outside of the computational domain at the point x1
=−1/4, x2=0 with the following initial temperature distribution

T0�x1,x2� = Tex�x1,x2,0� = exp�−
�x1 + 1/4�2 + x2

2

4�
	 �45�

As time progresses, the thermal disturbance diffuses and convects
by the ambient flow to interact first with the left-hand boundary of
the computational domain. Then, it propagates through the do-
main of interest with virtually no interaction with the boundaries,
and hits the outflow boundary to leave the computational domain.
We continue the numerical solution until the center of the thermal
disturbance reaches point x1=5/4, x2=3/4 outside the domain at
tmax=1.5.

For the initial boundary value problem �IBVP�, we specify ini-
tial conditions for the temperature using Eq. �45�. For the Peclet
numbers considered in this example problem, the computational
domain is virtually unaffected by the initial temperature T0�x1 ,x2�
owing to localization of the thermal fronts. However, as time ad-
vances, the contribution due to the volume integral in Eq. �9� will
not be insignificant since we employ the recurring initial time
formulation. To create a well-defined IBVP, we specify tempera-
tures on the vertical boundaries at x1=0, x1=1 directly from Eq.
�44�. Meanwhile, the normal heat fluxes on the horizontal bound-
aries at x2=0 and x2=1 are also specified corresponding to exact
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temperature distribution Eq. �44�. An L� error norm �T�t is used to
monitor the numerical solution error throughout the paper for any
time t� �0, tmax�. Thus,

�T�t = max�Tnum�x1,x2,t� − Tex�x1,x2,t�� for all x � � �46�

Accordingly, we evaluate the largest numerical error for the entire
time and space domains as follows

�T�max = max��T�t� for t � �0,tmax� �47�

In this paper, we consider three values of the diffusivity �,
namely, �=10−3, 10−4, and 10−5. In all cases, a corresponding
Peclet number is defined as Pe=UL /� with velocity magnitude
U=�5/2 and characteristic length L=�5/2. Thus, numerical re-
sults discussed in this paper encompass the range of Peclet num-
bers from 1250 to 125,000.

Typical influence domains due to the time-integrated kernels
�s�y� with boundary contours �s�y�=10−10 associated with the
source point �1=1, �2=0.5 are shown in Fig. 4. Here, the inner
contour corresponds to time t=0.01 and each subsequent contour
represents a doubling of the time level. Notice the upstream
propagation of the response due to the concentrated instantaneous
point source. The domain of influence becomes very localized as
the Peclet number increases. The localization of the time-
integrated kernel response facilitates a diagonal dominance of the
global matrix as shown in Fig. 5, where all nonzero entries are

represented by black dots. Thus the use of the main diagonal as
the simplest preconditioner in the BCGM �24� can be extremely
efficient. We should emphasize that the iterative algorithm has
been robust for almost all runs considered in this study. However,
for Peclet number Pe=125,000, the convergence of the iterative
solutions was poor or the iterations even diverged for time step
sizes 0.003��t�0.0015 when the thermal interacts with the in-

Fig. 4 Influence domains due to time-integrated kernel: „a…
Pe=1250 and „b… Pe=125,000. Time t varies from 0.01 to 0.64
with increments in factors of 2; �s=10−10.

Fig. 5 Global sparse matrix A for Problem 1, boundary ele-
ment mesh 40Ã40, pt=4, ph=4; „a… Pe=1250, density of the
matrix 0.01755; „b… Pe=125,000, density of the matrix 0.00934
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flow boundary of the computational domain. As mentioned above,
we utilized a direct sparse solver �25� whenever the sparse BCGM
solver fails to converge.

Figure 6 presents the temperature profiles along two cross sec-
tions x2=0.25 and x2=0.5 for the Peclet number Pe=1250. Here,
we consider coarse meshes nx1


nx2
=5
5 and 10
10 of quartic

boundary elements and biquartic volume cells. Notice very
smooth and accurate numerical solutions even for the coarser
BEM mesh, although the local �mesh-based� Peclet number

Peh =
h

ph
Pe �48�

significantly exceeds the critical value Pecr=2 beyond which
upwinding-free methods exhibit nonphysical instabilities �2,3�. In
Eq. �48�, h is the characteristic size of the boundary element mesh,
and ph is the order of the boundary elements and volume cells.
Note that ph=1, ph=2, and ph=4 for linear, quadratic, and quartic
boundary elements, respectively. We emphasize that uniform
boundary element discretizations of the computational domain are
utilized throughout this paper, thus, the mesh size is as follows

h = �x1 = �x2 =
1

nx1

=
1

nx2

As we increase the Peclet number to Pe=125,000, the thermal
disturbance becomes very concentrated around its center. The
problem leads to dramatic variations of the temperature in time

Fig. 6 Temperature profiles for Problem 1 at Pe=1250; �t
=0.05 Lines—exact solutions; Symbols—BEM solutions for pt
=4, ph=4; „a… x2=0.25, t=0.5; „b… x2=0.5, t=1, Peh=62.5 for mesh
5Ã5, and Peh=31.25 for mesh 10Ã10

Fig. 7 Surface plots of the thermal temperatures for Pe
=125,000; �t=0.005, pt=4, ph=4, t=1.0. Problem 1: „a… Mesh
90Ã90, Peh=347.2; „b… mesh 100Ã100, Peh=312.5; „c… mesh
154Ã154, Peh=202.9.
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and space. Thus, extremely fine boundary element meshes as well
as time step sizes are needed to resolve very sharp temperature
fronts. Figures 7�a� and 7�b� present surface plots of the thermal
propagation through the computational domain for meshes 90

90 and 100
100, respectively, with the time step size �t
=0.005. Due to an improper resolution in space for mesh 90

90, the numerical solution exhibits nonphysical oscillations in
Fig. 7�a�. The wiggles propagate mostly upstream from the ther-
mal disturbance with slight oscillations noticeable in the x2 direc-
tion. When we slightly refine the boundary element mesh to 100

100 in Fig. 7�b�, the solution becomes very smooth and accurate
as shown in Fig. 8�a�. Here, we present temperature profiles along
the cross sections x2=0.25 and x2=0.5 for t=0.5 and t=1,
respectively.

We should like to note for this particular Peclet number Pe
=125,000 and quartic time functions pt=4 that the numerical so-
lutions become extremely unstable when boundary element
meshes coarser than 90
90 are utilized. Thus, no solutions are
possible for these coarse boundary element meshes. Interestingly,
for this time step size, the numerical solutions using quartic time
functions and quartic boundary elements also become unstable
when we refine the mesh beyond 110
110. The instabilities per-
sist until we utilize a mesh finer than 160
160. Figure 7�c�

shows the temperature surface plots for mesh 154
154 using the
time step size �t=0.005. Notice the occurrence of oscillations in
the x2 directions that grow rapidly in time to completely contami-
nate the numerical solution at t�1 �Fig. 7�c��.

Here, we should like to note two additional observations. First,
the shape of the thermal disturbance is not impacted by the non-
physical oscillations. Second, no oscillations are present in the
streamwise directions. The temperature profiles for mesh 154

154 in the x1 directions presented in Fig. 8�b� demonstrate
oscillation-free numerical solutions. We emphasize here that the
numerical solutions remain stable and accurate for all BEM
meshes beyond 160
160 for �t=0.005. This mesh corresponds
to the local Peclet number Peh=195.3.

In Fig. 9, we further investigate the intermittent stability pattern
that persists for the Peclet number Pe=125,000 using quartic time
functions. Here, we utilize quartic boundary elements ph=4 and
consider the following time step sizes: �t=0.008, 0.005, 0.002,
0.001, and 0.0005. �Additional research is needed in the evalua-
tion of the kernels Pi�y ,�� and Ri�y ,�� to permit time step sizes
beyond �t=0.008.� For cases with �t�0.001, there are two re-
gions of instability. The first region corresponds to very coarse
meshes. As the mesh gets refined, the numerical solution becomes
stable and accurate even on a relatively coarse mesh �Fig. 9�.
Then, however, the solution becomes unstable again as we refine
the mesh further. Finally, when the local Peclet number becomes
smaller than 170, the solution regains the stability and accuracy.
Any further mesh refinement up to 340
340 shows no signs of
instabilities. The intermittent nature of the instability phenomena
also disappears completely when we utilize time step sizes �t
�0.001 �Fig. 9�. Here notice that the numerical solutions are un-
stable only when the local Peclet number Peh�175. Conversely,
one must consider using boundary element meshes finer than
170
170 to obtain stable and accurate numerical solutions for
this very high Peclet number. We note that no oscillations have
been observed for any other combination of the Peclet number,
and pt and ph for the boundary element discretizations up to
340
340 volume cells. We would like to emphasize that the sur-
face and volume integrations were performed for different thresh-
olding parameters �s and �v, respectively, to ensure that the insuf-
ficient integration accuracy was not a reason for numerical
instabilities arising at certain levels of mesh refinement. Interest-
ingly, no stability issues arose in Ref. �17� when modeling other
smooth problems, even for Pe=106. Thus, we believe that theo-
retical stability analyses of the BEM are mandatory to address
these instability issues for certain convective flow regimes.

Fig. 8 Temperature profiles for Problem 1 at Pe=125,000; �t
=0.005; x2=0.5; t=1; Line—exact solution; Symbols—BEM so-
lutions for pt=4, ph=4 „a… Peh=347.2 for mesh 90Ã90 and Peh
=312.5 for mesh 100Ã100; „b… Peh=202.9 for mesh 154Ã154
and Peh=195.3 for mesh 160Ã160

Fig. 9 BEM solution stability chart for Pe=125,000; pt=4, ph
=4; Problem 1
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Next, we concentrate on a quantitative assessment of the nu-
merical errors by performing convergence studies of the boundary
element solutions for different mesh sizes h. To present the nu-
merical results in a more compact form, we utilize the nodal-
based error �T�t defined by Eq. �46�. Figure 10 shows the investi-
gation of the convergence rates of the BEM solution errors with
respect to the mesh size h for Pe=125,000. Note that we utilize
pt=4 and consider small time step sizes �t to ensure that the
numerical error due to time discretization is negligible. The rates
of convergence approach ph+2 for quartic boundary elements and
volume cells �ph=4�. Due to stability issues discussed above, no
results are presented for coarse and moderate mesh refinements at
Pe=125,000 and ph=4 in Fig. 10.

Example Problem 2. The next unsteady convective heat diffu-
sion problem under consideration is again defined in the unit
square �x1 ,x2�� �0,1�
 �0,1�. The exact solution for this ex-
ample problem is given by:

Tex�x1,x2,t� =
1

2
erfc� x1 − t + 0.05

�4��t + 1�
	 +

1

2
erfc� x2 − t − 0.1

�4��t + 1�
	
�49�

The problem represents a time propagation of two sharp tempera-
ture fronts in a unidirectional flow with the velocity v1=1 and
v2=1 not aligned with the coordinate system. Two temperature
fronts originate outside the computational domain at x1=−0.05
and x2=0.1, respectively, and are aligned with the coordinates
axes. As time progresses, the fronts propagate by the ambient flow
to interact with the computational domain at an angle of 45°. We
obtain numerical solutions until the temperature fronts completely
leave the computational domain.

Again for the IBVP, we specify initial conditions for the tem-
perature using Eq. �49�. Temperature boundary conditions on the
vertical boundaries at x1=0, x1=1 and normal heat fluxes on the
horizontal boundaries at x2=0 and x2=1 are directly set from Eq.
�49�. For this example problem, we consider a single value of the
diffusivity �=10−4. With L=�2 and U=�2, the corresponding
Peclet number is then 20,000. The temperature fronts are sharp for
this large Peclet number flow, and due to small dissipation, the
sharp fronts remain virtually unaffected for the entire space and
time domains. In order to properly resolve dramatic variations of
the temperature in time and space, extremely fine boundary ele-
ment meshes together with small time step sizes are needed. Fig-
ures 11�a� and 11�b� present surface plots of the temperatures for
t=0.25 and t=1.0, respectively. The BEM solutions are obtained

for mesh 80
80 using �t=0.005. Notice that the solutions are
very smooth and accurate as shown in Fig. 11. Here, we present
temperature profiles for different time levels along the cross sec-
tions x2=0.2 and x2=0.8.

Figures 12�a� and 12�b� show the time evolution of the BEM
error �T�t for various mesh and time step sizes, respectively. Here,
we use quartic time interpolation functions, quartic boundary ele-
ments, and biquartic volume cells to ensure the highest level reso-
lution both in time and space. Notice in Fig. 12 that the numerical
error is large when a boundary element discretization of insuffi-
cient resolution is utilized. However, �T�t decreases rapidly as
either the boundary element mesh or time step size is refined. For
the boundary element mesh 100
100, a reduction of time step
sizes below �t=0.005 does not improve the BEM solution �Fig.
12�a��. In order to further reduce the numerical error �T�t, finer
boundary element meshes are required. In Fig. 12�b� notice that
the uniform 200
200 rectangular mesh using the fourth-order
spatial functions ensures mesh-independent solutions for �t
=0.0025. Again, much finer boundary element meshes are needed
to obtain mesh-independent solutions for smaller time step sizes
�t.

Figure 13 presents the investigation of the convergence rates of

Fig. 10 Convergence of the BEM solution error with respect to
the mesh size h; pt=4 Problem 1: Pe=125,000, �t=0.002

Fig. 11 Surface plots of the temperatures for Pe=20,000; �t
=0.005, pt=4, ph=4 Problem 2, mesh 80Ã80, Peh=62.5: „a… t
=0.25; „b… t=1.0
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the BEM solutions with respect to the mesh size h. Note that we
utilize quartic time functions �pt=4� and consider time step sizes
�t=0.0025 to ensure that the numerical error due to time discreti-
zation is negligible for this example problem. Observe in Fig. 13
that, again, the rates of convergence approach ph+2 for ph=4. For
quartic boundary elements and biquartic volume cells, the numeri-
cal error continues decreasing until meshes finer than 120
120
are used �Fig. 14�. Then, the BEM error remains at the level of
approximately �T�t=0.0003 with further mesh refinement. This
indicates that the time step size must be reduced in order to obtain
better accuracy of the BEM solutions.

Conclusions
Higher-order BEM for linear unsteady convective diffusion

problems are presented for two dimensions. The time-dependent
convective diffusion kernels originally proposed by Carslaw and
Jaeger �21� are implemented within the boundary element frame-
work. Higher-order time functions, higher-order boundary ele-
ments, and volume cells are utilized to ensure highly accurate
numerical solutions for predominantly convective flows. A very
efficient and accurate adaptive algorithm has been developed to
perform integration of the time-integrated kernels over the bound-
ary elements and evaluation of the volume integrals involving

instantaneous convective kernels arising in the boundary integral
formulation. This proposed algorithm leads to extremely sparse
matrices when convection dominates diffusion. Accordingly, the

Fig. 12 Temperature profiles for Problem 2 at Pe=20,000;
mesh 80Ã80, �t=0.005. Lines—exact solutions; Symbols—
BEM solutions for pt=4, ph=4 „a… x2=0.2; „b… x2=0.8.

Fig. 13 Time evolution of the BEM solution error for Problem
2: Pe=20,000, pt=4, ph=4 „a… variable time step size, mesh
100Ã100; „b… variable mesh size, �t=0.0025

Fig. 14 Convergence of the BEM solution error with respect to
the mesh size h. Problem 2: Pe=20,000, �t=0.0025; pt=4.
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efficiency of the numerical formulation increases as the integra-
tions and, respectively, evaluations are performed only within tiny
domains of kernel influence due to the time-integrated and instan-
taneous kernels.

Accuracy of the higher-order BEM for time-dependent convec-
tive diffusion has been examined for two example problems of
heat propagation in two dimensions with exact solutions. The
problems investigated in this paper involve significant computa-
tional challenges for high Peclet numbers due to steep temperature
fronts that propagate in space and in time. We have observed
numerical instabilities in the proposed boundary element formu-
lation for the first example problem when the global Peclet num-
ber is Pe=125,000 and the local Peclet number exceeds Peh
�170. Note, however, that the BEM solutions are stable and ac-
curate for smaller local Peclet numbers. For Peclet numbers Pe
=1250 and Pe=12,500 as well as for the second example problem
considered in this study, no numerical instabilities have been ob-
served although the local Peclet number can even exceed a few
thousand. Additional research is needed to develop theoretical sta-
bility analyses for the current formulation and also to extend the
methodology to three dimensions.

Nomenclature
F and G � discrete coefficients

f�y� and g�y� � convective kernels
h � mesh size
N � time increments

Pe � global Peclet number
Peh � local Peclet number
ph � space order
pt � time order

Q�x , t� � normal heat flux
r � radius vector
si � convected distance

T�x , t� � temperature
�T� � solution error

t � time
U ,V � characteristic velocities

vi � velocity of the flow
xi � Eulerian co-ordinate

yi=xi−�i � relative distance
�t � time step size
� � boundary of the domain
� � diffusivity
�i � source point
	 � relative time

� � domain
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Turbulent Three-Dimensional Air
Flow and Heat Transfer in a
Cross-Corrugated Triangular Duct
Turbulent complex three-dimensional air flow and heat transfer inside a cross-corrugated
triangular duct is numerically investigated. Four turbulence models, the standard k-�
(SKE), the renormalized group k-�, the low Reynolds k-� (LKW), and the Reynolds stress
models (RSM) are selected, with nonequilibrium wall functions approach (if applicable).
The periodic mean values of the friction factor and the wall Nusselt numbers in the hydro
and thermally developing entrance region are studied, with the determination of the
distribution of time-averaged temperature and velocity profiles in the complex topology.
The results are compared with the available experimental Nusselt numbers for cross-
corrugated membrane modules. Among the various turbulence models, generally speak-
ing, the RSM model gives the best prediction for 2000�Re�20,000. However, for
2000�Re�6000, the LKW model agrees the best with experimental data, while for
6000�Re�20,000, the SKE predicts the best. Two correlations are proposed to predict
the fully developed periodic mean values of Nusselt numbers and friction factors for
Reynolds numbers ranging from 2000 to 20,000. The results are that compared to par-
allel flat plates, the corrugated ducts could enhance heat transfer by 40 to 60%, but with
a 2 times more pressure drop penalty. The velocity, temperature, and turbulence fields in
the flow passages are investigated to give some insight into the mechanisms for heat
transfer enhancement. �DOI: 10.1115/1.2035110�

Keywords: Turbulence, Heat transfer, Cross corrugated ducts, Friction factor

Introduction
Heat and moisture transfer through hydrophilic membranes,

which is not frequently reported, has great advantages for the air
conditioning industry for the recovery of energy from exhaust air.
The concept is usually called the fresh air preconditioner. The
standard methods for exhaust air waste heat recovery are metal
heat exchangers and energy wheels. The metal heat exchangers
cannot recover latent heat and the energy wheels have cross-over
problems.

The development of membrane technologies has most recently
embodied applications in the exhaust air waste heat recovery
�1–3�. In these studies, parallel flat plates configurations are used,
mainly due to their simplicity in construction. However, since heat
mass transfer coefficients are relatively low, performances are
quite limited �4�. To intensify the heat and moisture transfer in a
membrane exchanger, turbulence promoters of various configura-
tions have been considered including volume displacement rods in
tubular membranes, static mixers in tubular membranes, fluidized
beds in tubular membranes and mesh screens in flat and spiral-
wound membranes. However, flux enhancement is still not satis-
factory �5�.

Most recently, attention has been drawn toward using corru-
gated membranes as turbulence promoters. This is analogous to
the use of corrugated plates in plate heat exchangers, which has
been proven to increase the mechanical strength of the plates as
well as the heat transfer rate. The configuration is shown in Fig. 1,
where two cross flows exchange heat through corrugated plates.
To get such an arrangement, flat membrane sheets are corrugated
to form a series of parallel triangular ducts. Sheets of the corru-
gated plates are then stacked together to form a 90° orientation
angle between the neighboring plates, which guarantees the same

flow pattern for both fluids. The membranes are very thin and soft.
With a predesigned plastic frame, triangular shaped duct walls are
formed to construct the required geometry.

Metal plate heat exchangers usually have corrugated sinusoidal
ducts. There have been many reports on heat transfer and friction
characteristics on cross-corrugated sinusoidal ducts, which pro-
vided the basis for the performance evaluation of compact heat
exchangers. Focke �6� experimentally investigated the perfor-
mance of plate heat exchangers with sinusoidal corrugations. The
author and co-workers studied the effect of corrugation angle be-
tween the neighboring plates on the flow behavior in passages.
They found that a 90° orientation angle produces the largest driv-
ing force that generates swirl in the furrows �7�. Ciofalo et al. �8�
reported numerical investigations for periodic boundary condi-
tions and entry flows. They used the commercial code Flow3D to
solve steady laminar and turbulent flow equations in the Reynolds
number range between 1000 and 10,000. Biomerius et al. �9� nu-
merically investigated the flow and heat transfer behavior in the
laminar and transitional flow regime between Re=170 and 2000.
They found that transition to turbulence takes place at a smaller
Re than conventional regular ducts. Very recently, Mehrabian and
Poulter �10� modeled the fully developed laminar flow and heat
transfer in a cross-corrugated sinusoidal duct with commercial
code AEA-CFX4. They found that the inclination angle between
the corrugations and the overall flow direction is a major param-
eter in the thermohydraulic performance of plate heat exchangers.
The objectives of these studies are to model the fully developed
flow in a repeated segment. Insights of the heat transfer and flow
phenomena in the entrance region are very scarce.

Heat transfer and friction performance in the cross-corrugated
triangular membranes, proposed for air conditioning and some
separation industries, are of great importance for system design.
Studies on this topic are still quite limited. Nevertheless, mass
transfer in the configuration, an analogy to heat transfer, is tenta-
tively studied by several authors. Scott et al. �5� found that mass
flux across the corrugated membrane increases substantially in
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comparison with flat membranes. Scott and Lobato �11� provided
some correlations for predicting Sherwood numbers from Rey-
nolds and Schmidt numbers, using electrochemically measured
mass flux data. These studies are very interesting. However, the
problem of detailed description of the local heat transfer and fric-
tion factor, and flow characteristics, in the complex geometry, is
still not addressed.

The aforementioned reasons have motivated the current inves-
tigation to numerically predict the local heat transfer and friction
factors along the flow in the entrance region of a cross-corrugated
triangular duct. The study is confined to turbulent flow for Re
=2000–20,000. Heat transfer and friction performance for lami-
nar flow for Re�2000 will be studied in another separate study.

Methods and Models

Computational Grids. The flow in a cross-corrugated duct is
complex �12�. For a corrugation angle of 90° between two neigh-
boring plates, the fluid flows predominantly along the furrows,
i.e., between the corrugation on each of the plates �7�. Due to
symmetry, the computational domain is selected as a repeated
block in the exchanger, as shown in Fig. 2. It is composed of two
walls: The upper wall is a corrugated triangular straight duct, and
the lower wall is ten parallel ducts of the same geometry with the
upper wall, but orient 90 ° to the former one. Consequently, the
whole computational domain can be considered as ten repeated
segments, or ten cycles.

Three-dimensional numerical simulations of fluid flow and heat
transfer in the computational domain are conducted. The solution
technique is based on a finite difference/finite volume representa-
tion, while allowing for general body-fitted grids. The SIMPLEC
pressure-velocity coupling algorithm is used.

Due to the triangular nature of the block, the computational
domain is meshed with tetrahedral grids. The meshes on the out-
side walls are shown in Fig. 3. The graph depicts the meshes only
for the first three and one-half cycles, to get an amplified view of
the mesh structure. Grid independence tests are done to optimize
and balance the solution precision and convergence time. Since
“wall function” simulations are conducted, the grid-generation
procedure is based on the following rules: The wall-adjacent layer

of control volumes is generated algebraically so that it has an
�approximately� uniform thickness, while the iterative algorithm is
restricted to the inner control volumes. The reason behind this
scheme is that, the wall function technique requires that the near-
wall grid points �control volume central points� lie well outside of
the viscous layer �say, y+ =30�.

Governing Equations. The equations describing the fluid flow
and heat transfer are transport equations for the continuity, mo-
mentum, and energy, which are developed from conservation laws
of physics. The fluid flow is described by conservation of mass
�the continuity equation�, momentum �Navier–Stokes equations�,
and energy �the temperature equation for the fluid�. The velocities
and temperatures are time-averaged and divided into a mean and a
fluctuating value, uj=Uj+uj� and T=T+T�. Together with the
boundary conditions, they form the steady-state governing equa-
tions for incompressible flow with negligible external and viscous
forces:

���Uj�
�xj

= 0 �1�

�

�xj
��UiUj� = −

�P

�xi
+

�

�xj
��ij + �ij

t � �2�

�ij = �� �Ui

�xj
+

�Uj

�xi
� ; �ij

t = − �ui�uj� �3�

�

�xj
��cpUjT� =

�

�xj
�qj + qj�� �4�

qj =
�cp

Pr

�T

�xj
; qj

t = − �cpuj�T� �5�

where �, �, and cp are density, viscosity, specific heat, respec-
tively. It would be impossible to solve these equations analytically
because of nonlinearity and the stochastic nature of turbulence.
The extra terms that appear due to averaging the velocity and
temperature are the Reynolds stress and the turbulent heat flux.
Modeling these is known as the closure problem of turbulence.
Various turbulence models have been proposed and in total four
models are considered.

The hydraulic diameter of the channel is defined as

Dh =
4Vcyc

Acyc
�6�

where Vcyc and Acyc are the volume and the surface area of the

Fig. 1 The flow channel geometry

Fig. 2 The single cross-corrugated channel segment for
computation

Fig. 3 The grid distribution for the computation domain,
showing two and one-half cycles
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channel, respectively.
The Reynolds number, Re, is defined as

Re =
�UmDh

�
�7�

where Um is the area-weighted mean velocity through a cross
section �m/s�.

The cycle-average heat transfer coefficient is evaluated from
the temperature difference between the inlet and the outlet of a
cycle

hm =
�UmcpAci�Ti − To�

Acyc�T
�8�

where Aci is the cross-sectional area at inlet or outlet of a cycle
�m2�; Ti and To are fluid temperature at inlet and outlet of a cycle,
respectively �K�; �T is the logarithmic temperature difference be-
tween the wall and the fluid, which is calculated by

�T =
�Ti − Tw� − �To − Tw�

ln
Ti − Tw

To − Tw

�9�

where Tw is the wall temperature �K�.
The cycle-average Nusselt number, Num, is defined as

Num =
hmDh

	
�10�

The cycle-average friction factor is calculated by

fm =

Pi − Po

Lcyc
Dh

1

2
�Um

2

�11�

where Lcyc is the length of a cycle �m�; Pi and Po are pressure at
inlet and outlet of a cycle, respectively �Pa�.

Dimensionless coordinates

x * =
x

Lcyc
�12�

y * =
y

y0
�13�

z * =
z

z0
�14�

where y0 ,z0 are the pitch and width of the repeated segment of the
duct �m�, respectively.

Turbulence Models

Standard k-� Model. The k-� model is the most popular of the
two-equation models and has produced qualitatively satisfactory
results for a number of complex flows. According to this concept,
the turbulent shear stress in Eq. �2� is determined by

�ij
t = �t� �Ui

�xj
+

�Uj

�xi
� −

2

3

ijk� �15�

where 
ij is the Kronecker delta function, 
ij=1 when i= j and
zero when i� j. The turbulent viscosity �t is determined by the
Prandtl–Kolmogorov equation �13�

�t = C��k2/� �16�

where the turbulence kinetic energy k and dissipation rate � are
calculated by

Uj
�k

�xj
=

1

�

�

�xj
��t

�k

�k

�xj
� +

�t

�

�Ui

�xj
� �Ui

�xj
+

�Uj

�xi
� − � �17�

Uj
��

�xj
=

1

�

�

�xj
��t

��

��

�xj
� + C�1

�

k

�t

�

�Ui

�xj
� �Ui

�xj
+

�Uj

�xi
� − C�2

�2

k

�18�

The turbulent heat transfer term in Eq. �5� is determined by the
following equation

q� =
�t

��

�T

�xj
�19�

The constants in the above model take following values �13�:

C� = 0.09; C�1 = 1.44; C�2 = 1.92;

�k = 1.3; �� = 1.3; �� = 1.3

Renormalized k-� Model. The renormalization group �RNG�-
based k-� model �RNG KE� follows the same framework as the
above two equations model but uses RNG methods �14�. The
model is to provide improved predictions of near-wall flows and
flows with high streamline curvature. The momentum and energy
equations can be rewritten in the following form:

���UiUj�
�xj

= −
�P

�xi
+

�

�xj
��eff� �Ui

�xj
+

�Uj

�xi
� −

2

3
�eff

�uk

�xk
� �20�

��Uj�cpT�
�xj

=
�

�xj
�
T��eff

�T

�xj
�� +

�Uj

�xi
��eff� �Ui

�xj
+

�Uj

�xi
�

−
2

3
�eff

�uk

�xk
� �21�

where

�eff = ��1 +	C�

�

k
	�
�2

�22�

Uj
�k

�xj
=

�ij
t

�

�Uj

�xj
− � +

�

�xj
��
k�eff�

�k

�xj
� �23�

Uj
��

�xj
= C�1

�

k

�ij
t

�

�Ui

�xj
− C�2

�2

k
+

�

�xj
�
��eff

��

�xj
� − R �24�

where R in the � equation is given by

R =

C��3�1 −
�

�0
�

1 + ��3

�2

k
�25�

with �=Sk /�, and �0=4.38, �=0.012. Other constants are �15�:

C� = 0.085; C�1 = 1.42; C�2 = 1.68

The term S is the modulus of the mean rate-of-strain tensor, Sij,
which is defined as

S = 	2SijSij �26�

where

Sij =
1

2
� �Ui

�xj
+

�Uj

�xi
� �27�

The RNG KE model yields an accurate description of how the
effective turbulent transport varies with the effective Reynolds
number �or eddy scale�. The coefficients 
T ,
k ,
�, in Eqs.
�21�–�24� are the inverse effect Prandtl number for T, k, and �,
respectively. They are computed using the following formula:


 
 − 1.3929


0 − 1.3929

0.6321
 
 + 2.3929


0 + 2.3929

0.3679

=
�

�eff
�28�

where 
0 is equal to 1/Pr, 1.0, and 1.0, for the computation of 
T,

k, 
�, respectively.
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Low Reynolds k-� Model. Unlike the k-� model, it is easier to
prescribe the boundary conditions in the k-� model. We know that
k=0 on solid boundaries, and � can be specified at the first few
grid points away from the wall as �=6� /�y2, �y the distance to
wall�. The resulting equations for k, �, and �t are:

�t = 
* k

�
�29�

The equations for kinetic energy and specific dissipation rate are
given as:

Uj
�k

�xj
= �ij

�Ui

�xj
− �*�k +

�

�xj
��� + �k�t�

�k

�xj
� �30�

Uj
��

�xj
=

�

�t
�ij

�Ui

�xj
− �2�2 +

�

�xj
��� + ���t�

��

�xj
� + 2��2

1

�

�k

�xj

��

�xj

�31�

The model constants are provided in references �16,17�:

�* =
9

100

5

18
+ �Ret

R�
�4

1 + �Ret

R�
�4 �32�


* =


0
* +

Ret

Rk

1 +
Ret

Rk

�33�


 =
5

9


0 +
Ret

R�

1 +
Ret

R�

�
*�−1

� = 0.075, 
0 = 0.1, �k = 0.1, �� = 0.5, R� = 8, �34�

Rk = 6, 
0
* = �/3, R� = 2.7

Full Reynolds Stress Modeling. The Reynolds stress model
�RSM� is also considered as a choice. The RSM model equation
for the transport of Reynolds stresses is given by the following
equation:

�

�xk
��Ukui�uj�� = −

�

�xk
��ui�uj�uk� + p�
kjui� + 
ikuj���

+
�

�xk
��

�

�xk
�ui�uj��� − ��ui�uk�

�Uj

�xk
+ uj�uk�

�Ui

�xk
�

+ p� �ui�

�xj
+

�uj�

�xi
� − 2�

�ui�

�xk

�uj�

�xk
�35�

The summation convention is used in the above equations.
Therefore, there are six equations, in all. In addition to the Rey-
nolds stress transport equations, the dissipation rate is modeled by
the dissipation equation as in the standard k-� model �SKE�. A
detailed description of the model is given by Moore et al. �18� and
Rokni et al. �19�. The default constants supplied by CFD code for
simulation are:

C� = 0.09; C�1 = 1.44; C�2 = 1.92; C1ps = 1.8

Boundary Conditions
At the walls, the no-slip condition is used. For k-� and RSM,

the two-layer-based nonequilibrium wall functions methods are
also employed. The key elements in the nonequilibrium wall func-
tions are as follows:

�1� The log-law for mean velocity is sensitized to pressure-
gradient effects.

�2� The two-layer-based concept is adopted to compute the
budget of turbulence kinetic energy in the wall-neighboring
cells.

�3� The law of the wall for mean temperature remains the same
as in the standard wall function.

The wall-neighboring cells are assumed to consist of a viscous
sublayer and a fully turbulent layer, where the logarithmic law of
the wall applies. This method requires some consideration of
mesh, i.e., the cell adjacent to the wall should be located to ensure
that the parameter y+ ���u�y /�� �u�, friction velocity� or
y*���C�

1/4kp
1/2y /�� falls into the 30–60 range. In the present

study, the y+ is adapted into the 35–55 range. In addition, a uni-
form wall temperature condition is assumed.

At the inlet, all dependent variables are assumed to enter the
pipe with uniform profile in the direction parallel to the corruga-
tion of the upper wall, i.e.,

u = u0, T = T0, k = k0, � = �0 �36�

The inlet boundary values of k and � are computed from an
estimated turbulence intensity, I, and turbulent length scale, �, as
follows:

k0 =
2

3
�u0I�2, �0 = C�

3/4k0
3/2

�
�37�

The turbulent intensity I, defined as u� /u, is equal to 5%, and
the length scale � is set to be 0.07·Dh in the present study, as
suggested by Li et al. �15�.

The exit boundary condition is treated as an outflow condition,
which means that the diffusion flux for all dependent variables are
set to zero at the exit and an overall mass balance is obeyed. This
outflow boundary condition is true if the flow becomes fully de-
veloped at a position far upstream from the exit because the ac-
curacy of the exit boundary condition should not affect the flow
and heat transfer fields far upstream from the exit. The results
computed afterward indicated that the flow becomes fully devel-
oped after three to five cycles after the inlet. Therefore, the as-
sumption is considered valid.

Solution Method
The governing equations are solved by using standard finite

difference methods that employ control-volume-based discretiza-
tion techniques along with a pressure-correction algorithm. The
N-S equations are solved by SIMPLEC scheme, while the convec-
tive term in the energy equation is solved by a first-order upwind
implicit approximation, and the diffusive term is by a second-
order central difference scheme. The fluid in the study is selected
as air.

Because of the intensive nonlinearity and coupling features of
this problem, the underrelaxation technique is applied to the itera-
tion process to accelerate convergence. The convergence criterion
of

R�
n

R�
n−1 � 10−4 �38�

is applied for all equations, where R�
n refers to the maximum

residual value summed over all the computation cells after nth
iteration. To test the criterion independence, another convergence
criterion of 10−5 is applied to a case. The difference of computed
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periodic Nu numbers of the two convergence criterion is within
1%.

The grid independency test has also been done. The calcula-
tions were primarily carried out with three different grid densities:
209,985, 104,992, and 419,970 mesh points. The channel fully
developed periodic mean pressure drop and temperature change
for the two fine grids are almost the same and 10% higher than
that for the coarse grid. For the finest grids, 419,970, the solution
is too time consuming, which is hard to use practically. Based on
the above experience, which establishes the grid independence,
the final calculations are performed for the 209,985 grids and the
results obtained in this paper refer to the grid geometry mentioned
above.

Results and Discussion

Model Validation. Selection of an appropriate turbulence
model for numerical simulation requires consideration of compu-
tational cost, anticipated flow phenomena, and the variables of
primary interest. The Nusselt numbers in the duct are of major
concern in this case. Therefore, the agreements of the calculated
Nu and experimental data are the main criterion for selecting tur-
bulence models.

For validation and comparison of the four turbulence models
used, a cross-corrugated triangular duct with geometric param-
eters identical to Scott and Lobato �11� is numerically simulated:
z0=2 mm; Lcyc=2 mm; and y0=1 mm. Figure 4 shows the experi-
mentally obtained �the discrete data were obtained from the ex-
perimentally obtained Sherwood correlations for a 90° corrugation
angle� and the calculated fully developed periodic mean Nusselt
numbers. As seen from this figure, of the four turbulence models
employed, generally, the RSM fits the experiment the best. The
differences are from 5% to 11%, for Re ranging from 2000 to
20,000. At lower Re, the low Reynolds k-� model �LKW� agrees
the best, while the standard k-� fits poorly. At higher Re, i.e.,
Re�6000, the SKE gives the best prediction. As for the RNG KE,
it seems inappropriate to use such model for the corrugated trian-
gular duct: The differences found between the calculated and ex-
perimentally are substantial. In the low Re range, the model over-
predicts the Nusselt number by 58%, while in the high Re range,
it underpredicts the Nu by 21%.

In the following analysis, for Re ranging from 2000 to 20,000,
the RSM model is employed to investigate the fluid flow and heat
transfer. The imperfection with this model is that the computa-
tional time is very long �17�, due to large memory size required.

Flow Distribution and Friction Factor. Figure 5 shows the
vector plot of the velocity in the x-y plane at z*=0.5 �the center in
width�, for Re=10,000. In the figure, the flow has two distinct
patterns: In the corrugation troughs of the upper wall, parallel
flow is predominant, while in the troughs of the lower wall, clock-
wise strong swirls are generated due to the fact that the fluid turns
abruptly when facing the trough walls of the lower wall. The
shapes of the swirls in the valleys become almost identical to each
other, after three to five cycles, indicating a cyclic fully developed
manner. These swirls intensify the momentum transfer in the duct.

Figure 6 shows the velocity vectors in the y-z plane at x*=4.5.
This plane is perpendicular to the main flow direction, and is
located at the center of the fourth cycle. It can be seen that in the
corner regions, there exist appreciable secondary flows. These
secondary flows all exhibit the same pattern: Departing from one
wall, arriving at the other of the same corner, and leaving a small
region very close to the corner where the fluid flows are almost
retarded. In the central part of the upper wall, the secondary flows
are very weak and cannot be observed clearly, while in the lower
wall, the secondary flows are relatively strong, even in the central
part. There are semiswirls around each corner. The interactions of
these semiswirls generate demonstrable secondary flows in the
central part of the lower wall valley. These secondary flows gen-

Fig. 4 Predictions of fully developed periodic mean Nusselt
numbers with various turbulence models

Fig. 5 Velocity vectors in the x-y midplane showing five
cycles

Fig. 6 Velocity vectors in the y-z plane at x*=4.5

Journal of Heat Transfer OCTOBER 2005, Vol. 127 / 1155

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



erated swirls will intensify momentum and heat transfer.
For the cross-corrugated triangular ducts, the cyclic mean fric-

tion factor is one of the most important parameters affecting heat
exchanger design. Figure 7 shows the calculated periodic mean
friction factor along the duct length with four turbulence models.
The trend is like most of the developing flows: Near the inlet
region, the friction factor is very high; with the flow propagates,
after three to five cycles, it decreases gradually to the fully devel-
oped value, fd. At the location near the outlet, the mean friction
factor rises somewhat, which may be attributed to the influence of
outflow boundary conditions.

The corrugation usually leads to increased pressure drop. Fig-
ure 8 shows the calculated fully developed periodic mean friction
factor with varying Reynolds numbers. Figure 9 demonstrates
comparisons between the friction factors in parallel flat plates pas-
sages and in corrugated ducts. Under the same flow rates, the
friction factor for the cross-corrugated ducts is three times greater
than that for a parallel flat plates duct. Another feature with this
figure is that the fd decreases with an increasing Re.

To summarize the relations between the periodic mean friction
factors with Renolds numbers, a correlation has been proposed,
with data obtained from the RSM model. The correlation is:

fD = 1.9498 Re−0.27 �39�

for 2000�Re�10,000
In contrast, friction factor in parallel flat plates is correlated by

�20,21�

fD = �0.790 ln Re − 1.64�−2 �40�

Temperature Distribution and Nusselt Number. The iso-
therms shown in Fig. 10 in an x-y midplane for Re=10,000
clearly show a cyclic manner. After three to five cycles, the ther-
mal flow has become fully developed �22�, and the shapes of
isotherms in different valleys are similar. It is clear that the iso-
therms in the last one to two valleys have some distortion, which
may also be attributed to the exit flow boundary conditions. The
temperature gradients at the walls are very high, indicating an
enhanced heat transfer, due to strong turbulence. The temperature
profiles in a y-z cross section are shown in Fig. 11. The isotherms
at the bottom line are sparsely distributed, indicating poor heat
transfer at the sharp edge �in flow direction� of the duct. Contrary
to laminar flow, which usually has lower heat transfer on the
lower walls, the turbulence flow in this case has high heat transfer
both on the upper walls and on the lower walls, as a result from
turbulence.

Figure 12 shows the mean Nusselt numbers for each cycle,
Num, along the duct length, with four turbulence models. At the
entrance, the cyclic mean Nusselt numbers are very high, due to
very thin boundary layers at the entrance. Along the flow direc-
tion, the cyclic mean Nusselt numbers decrease rapidly in the first
three to five cycles, and then arrive gradually at some stable val-
ues, which is denoted as the fully developed value, NuD. Using
the data from RSM model and a least-squares curve fit technique,
a correlation has been formulated, which is:

NuD = 0.234 Re0.599Pr0.333 �41�

for 2000�Re�20,000.
In contrast, heat transfer of the turbulence flow in parallel flat

plates is governed by the Dittus and Boelter equation �20�

NuD = 0.023 Re0.8 Pr0.333 �42�

Fig. 7 Distribution of periodic mean friction factor along flow
direction

Fig. 8 Calculated fully developed periodic mean friction factor

Fig. 9 Comparisons of periodic mean friction factors with
Reynolds numbers, cross-corrugated, and parallel flat plates

Fig. 10 Isotherms in the x-y midplane, z*=0.5
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The variations of fully developed cyclic mean Nusselt numbers
with Re, which is dictated by the above correlation, is depicted in
Fig. 13. The Nusselt numbers increase, almost linearly with Re.
For comparison, the fully developed Nusselt numbers in parallel
flat plates passages �20� are also plotted in Fig. 13. As can be seen,
the corrugation results in a 40–60% heat transfer enhancement.
This is mainly due to the enhanced momentum transfer in the
cross corrugations.

Turbulence. Figure 14 shows the contours of turbulence inten-
sity, u� /u, in the x-y plane at z*=0.5 when Re=10,000. The tur-
bulence is almost uniform in the upper corrugation. However, sig-
nificant variations of turbulence happen near the walls and in the
valleys of the lower corrugation, especially on the crests of the
valleys. The largest turbulence occurs near the crests of the lower
wall, in Zone A, where the lower wall faces the fluid. The second
largest turbulence occurs also near the lower walls’ crests, but in
Zone B, where the wall locates backward the main flow direction.
The amount of heat transfer and momentum is mainly dependent
upon the level of turbulence that is produced within the duct. The

strong turbulence in the lower corrugations is responsible for the
intensification of the heat and momentum transfer.

Conclusions
Three-dimensional turbulence flow and convective heat transfer

in the entrance region of a cross corrugated triangular duct which
is proposed for a novel membrane module has been studied nu-
merically employing four turbulence models: SKE, RNG-KE,
LKW, and RSM. Compared to available experimental data, the
RSM seems superior to others during the whole Reynolds range
from 2000 to 20,000. The cross-corrugation nature of the duct
generates strong turbulence and secondary flows to enhance heat
transfer on the duct walls. Compared to a parallel flat plate geom-
etry, the cross-corrugation can obtain a 40 to 60% heat transfer
augmentation, however with a penalty of twice the friction pres-
sure drop. In addition, both the friction factor and the heat transfer

Fig. 11 Isotherms in the y-z plane at x*=4.5

Fig. 12 Distribution of periodic mean Nusselt numbers along
flow direction

Fig. 13 Comparisons of the fully developed Nusselt numbers
for the corrugated duct and parallel flat plates

Fig. 14 Contours of turbulence intensity in the x-y plane at
z*=0.5
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exhibit a cyclic manner, and the generated swirls rotate clockwise
in the corrugation valleys. The turbulence is almost uniform in the
upper corrugation, but has large variations in the lower corruga-
tions and especially near the crests of valleys.
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Nomenclature
Aci � cross-sectional area at inlet or outlet of a cycle,

m2

Acyc � surface area of the channel, m2

cp � specific heat, kJ/�kgK�
Dh � hydraulic diameter of the channel, m

f � friction factor
fD � fully developed cyclic mean friction factor
h � heat transfer coefficient, kW/ �m2 K�
I � turbulent intensity
k � turbulent kinetic energy, m2/s2

� � turbulence length scale, m
Lcyc � length of a cycle in flow direction, m
Nu � Nusselt number

NuD � fully developed cyclic mean Nusselt numbers
p � pressure �Pa�
P � time average pressure �Pa�

Pr � Prandtl Numbers
q � heat flux, W/m2

Re � Reynolds number,
T � temperature, K
U � time average velocity, m/s
u � velocity, m/s

Vcyc � volume of channel, m3

x, y or z � coordinates, m
y0 � pitch of the repeated segment of the duct, m
z0 � width of the repeated segment of the duct, m

Greek Letters
� � density, kg/m3

� � kinematic viscosity, m2/s
� � molecular viscosity, Ns/m2

� � shear stress, N/m2

� � specific dissipation, s−1

� � turbulent dissipation rate, m2/s3

Superscripts
* � dimensionless
� � fluctuation

Subscripts
0 � inlet
i � inlet

m � mean
o � outlet

t � turbulent
w � wall
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Boundary/Finite Element
Modeling of Three-Dimensional
Electromagnetic Heating During
Microwave Food Processing
A three-dimensional 3D finite element-boundary integral formulation is presented for the
analysis of the electric and magnetic field distribution, power absorption, and tempera-
ture distribution in electrically conductive and dielectric materials. The hybrid finite/
boundary method represents an optimal approach for modeling of large-scale
electromagnetic-thermal materials processing systems in which the volume ratio of the
sample over the entire computational domain is small. To further improve the efficiency,
the present formulation also incorporates various efficient solvers designed specifically
for the solution of large sparse systems of linear algebraic equations. The resulting
algorithm with a compressed storage scheme is considered effective and efficient to meet
the demand of 3D large scale electromagnetic/thermal simulations required for process-
ing industries. Examples of 3D electromagnetic and thermal analysis are presented for
induction and microwave heating systems. Numerical performance of the computer code
is assessed for these systems. Computed results are presented for the electric field distri-
bution, power absorption, and temperature distribution in a food load thermally treated
in an industrial pilot scale microwave oven designed for food sterilization. Computed
temperature distribution in a food package compares well with experimental measure-
ments taken using an infrared image camera. �DOI: 10.1115/1.2035112�

1 Introduction
Electromagnetic and thermal phenomena occur in processing

systems for both electrically conducting and nonconducting mate-
rials. For the former, induction heating is often applied. Heating
by induction is based on the Faraday principle of induction, by
which the joule heating results from the self-interaction of eddy
currents, which in turn originate from the free moving electrons.
For the latter, however, the heating stems from the excitation of
dipoles at their resonant frequency. In the case of microwave heat-
ing of dielectric materials such as ceramics or foods, the electro-
magnetic energy is generated in the materials when the applied
field frequency resonates with that of the dipoles.

Many different numerical schemes have been used to predict
the electromagnetic fields in microwave systems. These schemes
are based on either the time domain �TD� formulation or the fre-
quency domain �FD� formulation. Numerical techniques to solve
the time domain Maxwell’s equations include the finite difference
time-domain �FDTD� method �1�, the finite element time-domain
�FETD� method �2�, and the transmission-line matrix �TLM�
method �3�. To obtain the required electromagnetic heating distri-
bution using a time-domain method, time matching is required to
reach a time harmonic, quasisteady state. With the frequency do-
main formulation, however, the solution of the time-harmonic
field distribution is obtained at once without time matching. This
makes the frequency-domain approach very attractive for electro-
magnetic heating applications because heating by an oscillating
electric field comes from the time-averaged value over a fre-
quency period.

Turning to the study of microwave processing of foods, Zhang
et al. �4� have recently presented a finite element model for elec-

tromagnetic field distribution and thermal conduction in a food
package loaded in a household microwave. For the three-
dimensional �3D� electromagnetic field calculations, edge ele-
ments are often used to satisfy the requirement that either the
electric field or magnetic field is to be divergence-free �5�. For a
majority of microwave heating problems, the size ratio of a
sample to a microwave cavity is very small, often less than 10%,
and thus one efficient algorithm may be developed using a hybrid
finite and boundary element method �FE/BE�. By this hybrid
method, the finite elements are used for the domain of the food
package, and the boundary elements for the free space. The use-
fulness of this strategy has been demonstrated in the case of 2D or
axisymmetric induction heating problems where the entire free
space �including the radiation boundary condition at infinity� is
discretized by the use of boundary elements �6–8�. It is generally
recognized that the advantage of a hybrid finite/boundary element
method is even more pronounced when employed for 3D applica-
tions where the heating absorber occupies a small portion of the
entire computational space.

This paper presents a hybrid finite element and boundary ele-
ment method for the modeling of 3D electromagnetic field distri-
bution and/or power absorption as well as temperature distribution
in induction and/or microwave processing systems, with the latter
emphasizing the application in microwave thermal food steriliza-
tion. The very basic idea of the FE/BE coupling for the micro-
wave field distribution, without heating, was demonstrated by
Paulsen et al. �9�. Their algorithm, however, used node-based fi-
nite element interpolations, which are now well known to produce
spurious results, owing to the failure to enforce the divergence-
free constraint �8�. While various approaches may be applied to
alleviate the problem, our present approach uses the edge ele-
ments to satisfy the divergence-free condition so as to eliminate
the spurious solution. Consequently, both the finite element and
boundary element interpolations are edge based to ensure the
FE/BE compatibility. While possible in theory, the numerical
implementation of an edge-based FE/BE method does not appear
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to have been attempted for the solution of electromagnetic-heating
problems in general 3D geometries. In what follows, the hybrid
finite/boundary element formulation of 3D Maxwell equations is
presented. Both iterative and direct coupling schemes are dis-
cussed, along with their advantages and disadvantages. The mesh
distribution for the hybrid finite/boundary simulation of micro-
wave distribution in industrial food processing systems is also
discussed, along with the computational performance of the hy-
brid method and the finite element method. Finally, calculated
results are compared with the experimentally measured data in a
microwave heating system for food processing.

2 Problem Statement
The microwave �MW� applicator system to be analyzed is an

industrial MW food processing unit and is schematically shown in
Fig. 1, where two rectangular waveguides �one feed waveguide
and one multimode cavity� are coupled to each other. The top part
of the MW applicator system is the standard WR-975 waveguide
with ax=248 mm and by=124 mm; the bottom part is the over-
sized waveguide of ax=496 mm, by=248 mm, and cz=100 mm.
The piece of food load with the dimension 140�100
�30 �mm3� is fixed at the center of the multimode cavity. An
electric field of the TE10 mode with a frequency 915 MHz is
applied at the top of the feed waveguide to produce the dissipated
electrical power that is absorbed by the food load, for which the
initial and environmental temperatures are set at the room tem-
perature.

The whole simulation procedure can be divided into two steps.
First, the electrical and magnetic fields inside the waveguide are
simulated by using the finite element method �FEM� or finite/
boundary element �FE/BE� method and the dissipated power dis-
tribution in the food piece is then derived from the electromag-
netic field distribution. Second, the temperature distribution inside
the food piece is computed using the FEM by setting the dissi-
pated power as the heating source term and applying the radiation
boundary condition to the surface of the food piece. The differen-
tial form of Maxwell’s equations is the most widely used repre-
sentation for electromagnetic boundary-value problems. Max-
well’s equations are coupled partial differential equations, which
have more than one unknown variable. Therefore, the vector wave
equation derived from the Maxwell equations combined with the
energy equation is taken as the governing equations for the mi-
crowave heating problems under consideration

� �
1

�r
� � E − �2��cE = − j��Ji �1�

�Cp

�T

�t
= � · � � T + Q �2�

In the above, Ji is an impressed or source current, and �c�=�
− j� /�� results from the combination of the induced current ��E�
and displacement current �j�D�. It is noted that Eq. �1� is written
in phasor notation �10�. With reference to Fig. 1, the appropriate
boundary conditions for these governing equations are stated be-
low

n̂ � E = 0 � �1 � �3 for PEC boundary condition �3�

−
1

�r1
n̂1 � � � E1 = − U1 = U2 = n̂2 � � � E2 � �1 � �2

�4�

− �n̂ · �T = ��s�T4 − T�
4 � � �4 � �5 �5�

where 	1, 	2, and 	3 are the FEM domain, �BEM� domain, and
the PEC �perfect electrically conducting� domain respectively; 	4
and 	5 represent the food piece and the environment, respec-
tively. n̂1 is the outnormal from the FE region, and n̂2 the outnor-
mal from the BE region.

3 Method of Solution
The 3D electromagnetic field may be solved using the edge

finite element method �11�. The edge-based elements are neces-
sary to satisfy the divergence-free constraint, � ·E=0 �3�. How-
ever, the huge sparse matrix produced by the FEM appears to be a
major setback to finding an efficient numerical solution to a large
scale problem. Our experience shows that this remains true even
with various efficient solvers designed specifically for the solution
of a large sparse system of linear algebraic equations to improve
the computational efficiency. To alleviate the disadvantage of the
finite element method, a hybrid finite element-boundary method is
employed instead. Using this approach, finite elements are used in
the food package where power density is needed and material
properties may be a function of temperature, while boundary ele-
ments are used elsewhere. The FEM and the BEM are coupled
through the interface boundary conditions. This idea is shown in
Fig. 2.

3.1 Finite Element Formulation. To develop a finite element
formulation in the food package, the wave equation is integrated
with respect to a vector testing function 
E.

Fig. 1 Schematic representation of MW Applicator System

Fig. 2 Schematic representation of the coupling of the finite
element and boundary element
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�� �
V


E�� �
1

�r
� � E − �2��cE�dV =

−�� �
V

j��Ji · 
EdV �6�

Integration by parts gives rise to the surface integral term

�� �
V

1

�r
� � E · � � 
EdV −�� �

V

�2��c
E · EdV

=�
S

1

�r
�
E � � � E�ndS −�� �

V

j��
E · JidV �7�

Making use of the vector identity

�
E � � � E�n̂ = − �n̂ � � � E�
E �8�
and also the boundary conditions, the final integral formulation is
obtained

�� �
V

� 1

�r
� � E · � � 
E − �2��c
E · E�dV

= −�
S

�
E · U�dS −�� �
V

j��
E · JrdV �9�

With appropriate finite element discretization and necessary el-
emental calculations followed by assembly, one has the matrix
representation of Eq. �9�

�K�	E
 + �B�	U
 = 	F
 �10�
where the matrix elements are calculated using the following ex-
pressions:

Kij =�� �
V

� 1

�r
� � Ni · � � N j − �2��cNi · N j�dV

Bij =�
S

Ni · S jdS

Fi = −�� �
V

j��Ni · JidV

Note that here Ni and Si are edge-based vector shape functions
and their derivatives �8�.

3.2 Boundary Element Formulation Using the Dyadic
Green Function. The basic idea of the hybrid FE/BE method was
introduced for the study of electromagnetics by Silvester and
Hsieh �12� and McDonald and Wexler �13� for solving exterior or
unbounded field problems. Later, the method was applied to solve
two- and three-dimensional antenna and scattering problems.
Here, it is applied to solving the electromagnetic field in a micro-
wave system, and the formulation is based on Green’s theorem
involving the dyadic Green’s function

�� �
V

�E · � � � � G� − G� · � � � � E�dV

=�
S

�G� � � � E − E � � � G� �n̂dS

=�
S

��n̂ � E� · � � G� + �n̂ � � � E�G� �dS �11�

Now, substituting into the above equation the following wave
equations and the equations for the dyadic Green’s function:

� � � � E − k0
2E = − j��Ji �12�

� � � � G� − k0
2G� = I�
�r − r�� �13�

and carrying out the necessary integration, one has

E�r� = − jk0Z0�� �
V

J�r��G� 0�r,r��dV� −�
S

	�n̂� � E�r���

����G� 0�r,r��� + �n̂� � �� � E�r���G� 0�r,r��
dS� �14�

The surface’s unit normal direction points outward from the re-
gion 	2. In Eq. �14� the first term on the right-hand side is the
field radiated by J in the free-space environment, thus denoted as
Einc. With the following relation:

�� � G� = ��G0�r,r�� � I� �15�

and the surface divergence theorem, Eq. �14� can be further sim-
plified as

E�r� = Einc�r� −�
S

	n̂� � E�r�� � ��G�r,r��

+ �n̂� � �� � E�r���G�r,r��
dS�r�� −
1

k0
2�

S

� G�r,r��

����n̂� � � � E�r���dS�r�� �16�

Taking the cross product of Eq. �16� with surface normal n̂ yields

n̂ � E�r� = n̂ � Einc�r� − n̂ ��
S

	n̂� � E�r�� � ��G�r,r��

+ �n̂� � �� � E�r���G�r,r��
dS�r�� −
1

k0
2 n̂

��
S

� G�r,r�����n̂� � � � E�r���dS�r�� �17�

After the BE discretization using edge boundary elements, fol-
lowed by calculations at the element level, Eq. �17� may be rep-
resented in the following matrix form:

�Bss�	Es
 = 	bs
 − �
t

Mt

�Pst�	Et
 − �
t

Mt

�Qst�	Ut
 �18�

where the matrix elements are calculated by

�Bss� = −� �
Ss

	Ns
	Ss
TdS�r�

	bs
 =� �
Ss

	Ss
Einc�r�dS�r�

�Pst� =� �
Ss
�	Ss
 ·

/
St

	St
T � ��G�r,r��dS�r��
dS�r�

�Qst� =� �
Ss
�	Ss
 ·� �

St

	St
TG�r,r��dS�r��
dS�r�

− k−2� �
Ss
�	� · Ss
 � �

St

�� · 	St
TG�r,r��dS�r��
dS�r�

With some matrix algebra, Eq. �18� is written more conve-
niently in the following form:

Journal of Heat Transfer OCTOBER 2005, Vol. 127 / 1161

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�B2�	U2
 = 	F2
 + �K2�	E2
 �19�

where B2 is the boundary element matrix associated with the un-
knowns.

3.3 Coupling of Boundary and Finite Elements. The
boundary and finite element formulations for the solution of elec-
tric field distribution are coupled through the interface conditions
along the boundary of 	1 and the boundary of 	2,

1

�r1
n̂ � � � E1 =

1

�r2
n̂ � � � E2 and n̂ � E1 = n̂ � E2

There are two ways to obtain a coupled solution of Eqs. �10�
and �19� with the use of the above interface conditions. One way
is to use direct coupling, by which the entire boundary element
region is treated as a macroelement, and the boundary element
global matrix is then incorporated into Eq. �10�. This approach
works efficiently for 2D and moderately sized 3D problems �14�.
However, it becomes inefficient for large 3D problems such as the
one under consideration because it substantially increases the re-
sultant edge finite element matrix bandwidth and hence the CPU
times. Another approach is iterative �10,14�. By this approach, Eq.
�19� is solved for 	U2
 with an assumed 	E2
 on the interface. The
standard �LU� decomposition for complex matrix can be used for
the solution. Then 	E1
 is solved using Eq. �10� with known 	U2
.
The convergence on �	E2
− 	E1
���, where � is the convergence
criterion, is checked. If convergence is not achieved, 	E2
= 	E1

along the interface is used to predict an updated 	U2
 using Eq.
�19� and then 	E1
 is updated using Eq. �10�. The process is re-
peated until the convergence is achieved.

It is worth noting here that for either of the two approaches, the
matrix B2 requires a LU decomposition only once and the decom-
posed matrices are stored in the memory for subsequent back
substitutions when needed. In the case of the iterative procedure,
this means that subsequent iteration between FE and BE requires
only a back substitution procedure, thereby leading to a significant
increase in computational speed.

3.4 Finite Element Solution of Temperature Distribution.
The energy equation is solved using the Galerkin finite element
method. The finite element solution of Eq. �2� is well known and
has been documented in some of our publications �1,2�. Here the
volumetric heating source Q�Q=Pd=0.5�eE ·E*� is calculated
from the hybrid FE/BE element solution described above. Using
the Galerkin finite element formulation, the matrix equation for
the temperature field takes the following form:

NT · Ṫ + LT · T = GT �20�
where the coefficients are calculated by

NT =�� �
v

�Cp

TdV

LT =�� �
v

� � 
 · �
TdV

GT =��� Q
dV +�� qT
dS

It is noted that for the temperature calculations, the standard node-
based shape functions are used.

3.5 One-Way Versus Mutual Coupling for Microwave and
Thermal Calculations. For electromagnetic-thermal problems,
two types of coupling exist, depending upon weather or not the
dielectric property is a function of temperature. If the dielectric
property is temperature independent, then the electric field needs
to be calculated once and the same power density is used for the
time-matching solution of the temperature field during heating.

On the other hand, if the property is a function of the local tem-
perature, the mutual coupling of the electric and thermal fields is
required. In this case, an iterative procedure is required for the
electromagnetic and thermal calculations. In the present imple-
mentation for mutual coupling, the iterative procedure involves
updating the electromagnetic field using the FE/BE and the tem-
perature field using the FEM until convergence on both fields is
achieved. This is done at every time step during transient thermal
calculations. This is permissible since the relaxation time for elec-
tric field is several orders of magnitude shorter than that for the
thermal field �10�.

4 Numerical Solution of a FE Sparse Matrix
Since a large sparse matrix is formed during the finite element

discretization, it is necessary to develop efficient computer meth-
ods for solving the sparse systems of linear algebraic equations. A
large number of research articles and books have been published
in the field �15–18�. The methods may be classified into iterative
and direct categories. Although iterative methods have the advan-
tage of saving computer storage, they are difficult to converge to
an accurate order and are, in general, slower than the direct meth-
ods, which require more memory but no iteration. A rule of thumb
is that whenever memory is affordable a direct method should be
used. Of course, a blind use of the direct method without carefully
accounting for sparseness will lead to a disaster for finite element
computations. There are four distinct phases �ordering, storage
allocation, factorization, and triangular solution� in the direct
method for the solution of a sparse matrix arising from finite
element formulations. Ordering is the key, and unfortunately, is
theoretically proven to be heuristic. In the present study, available
ordering algorithms are compared in order to reduce either com-
puter storage or computer execution time or a combination of the
two. First, the band scheme and the skyline scheme are the sim-
plest methods and can be implemented relatively easily, but they
are not necessarily efficient. Second, it is attractive to select the
general sparse methods that only exploit the nonzero elements in
the triangular factor L of A. Those methods have common char-
acteristics, such as symbolic factorization, general sparse symmet-
ric factorization, and general sparse symmetric solution. Three
ordering schemes in this category, quote minimum degree, mul-
tiple minimum degree, and nested dissection, are studied. The
other ordering methods, quotient tree and one-way methods, are
also applied, and their performances are compared with the other
three. All these schemes have been incorporated in our code and
extensive testing has been made. The comparative numerical
study suggests that the multiple minimum degree is the most ef-
ficient method for solving the electromagnetic problems presently
under consideration.

5 Result and Discussion
The computational algorithm developed above is capable of

predicting the electric field distribution, the magnetic field distri-
bution, the energy distribution, and the temperature and fluid flow
distribution. For computational electromagnetics, the mesh plays
an important role. Thus, it is necessary to study the mesh distri-
bution effect; in particular, it is necessary to study the mesh den-
sity along the propagation of the electromagnetic field. Figure 3
shows the electric field distribution corresponding to different cell
sizes in the propagation direction, which illustrates that the rela-
tive error of the computed results becomes very small when cz /�
is close to 10%. The above testing suggests that at least ten cells
per wavelength ��� are required to obtain accurate results. Al-
though the rule of selecting the mesh is obtained from the finite
element method, it appears to be applicable to the boundary ele-
ment method as well. The final mesh used for the numerical com-
putations is determined such that any further refinement of the
mesh produces an error smaller than 0.1% �relative to the final
mesh�.
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5.1 Validation of the Computer Model. Since computer
codes for the temperature calculations have already been validated
in the previous papers �7,8�, they are omitted here. However, the
computer code for the simulation of the electromagnetic fields
needs to be checked against the available analytic solution before
being applied for the MW applicator. The testing is done for two
cases: �1� benchmark testing in a standard waveguide and �2�
electromagnetic field distribution in the semi-infinite metallic slab.

First, the electric field distribution in the standard MW-975
waveguide is considered. The waveguide is filled with air, and the
length of the waveguide in the propagation direction is 1.25�z.
The TE10 model from a device is launched at the entrance of the
waveguide, and then the waves undergo reflection at the bottom
surface. The reflected waves interfere with the incident waves to
distribute the electrical field within the internal space. The ana-
lytical expression for the electric field is written as follows:

Ey = E0
+e−jkzZ + E0

−e+jkzZ �21�
Figure 4 shows the 3D view of the distribution of the electric field
�Ey component� and the module of the electric field �E� distribu-
tion. Figure 5 compares the numerically calculated electric field
distribution along the central axis in the propagation direction
with the analytic solution given by Eq. �21�. The computed result
from the FE/BE model is only plotted for the FE region because
the surface integral is used in the BE region. Excellent agreement
exists between the numerical and analytical solutions, thereby
validating the present FE/BE formulation. Though not shown, the
same results were obtained using the FEM only.

As another comparison, a semi-infinite metallic slab shown as
the inset in Fig. 6 is considered. The analytical equation for the
electric and magnetic fields can be easily obtained

Ey = Ese
−�my, Hy = Hse

−�my �22�
The coefficients are calculated by

�m = ��1 + j� and 
 =
1

�
=� 2

�m��

where 
 is the skin depth over which the electric and magnetic
fields drop to 1/e of their value at the surface. Figure 6 depicts
that the numerical results from the FE/BE or FEM agree with the

analytical results very well, thereby validating once again the
FE/BE and/or FE implementations.

5.2 Simulation of Industrial Microwave Food Processing.
The computer model, tested above, is now applied to simulate the
electromagnetic and thermal phenomena during microwave food
processing in an industrial microwave applicator �see Fig. 1�. The
food package has a permittivity �� of 47.45 and a loss factor �� of
38.55. It is placed at the center of the bottom cavity. The incident
dominant mode TE10 has a frequency of 915 MHz, and the envi-
ronmental temperature is 300 K. The materials properties used for
the temperature calculations are given in Table 2.

The food load is a dielectric material and thus has no conduc-
tive losses. The polarization losses of the electromagnetic field are
the main mechanism for heating. For microwave heating prob-
lems, the FE/BE model has a decisive advantage in terms of
memory storage, as shown in Table 1. Note that here the FEM
memory requirement is based on the multiple minimum degree
ordering scheme for the direct solver, and the FE/BE memory
requirement includes both FE and BE matrices. The calculations
show that the solution of the FE/BE method is almost twice as fast
as that of FEM. For microwave food processing simulations, the
boundary element matrix B2 is LU decomposed once and the de-
composed matrix is saved in the memory. This is because the
dielectric property of the air is taken as constant. This feature is of
crucial importance for the mutually coupled microwave-thermal
problems. Numerical simulations show that for these mutually

Fig. 3 Electric distribution along the center line of the stan-
dard WR-975 waveguide along the propagation direction with
dominant mode TE10 computed by using meshes of different
cell sizes „cz… in the propagation direction „z direction…

Fig. 4 3D view of the distribution of the dominant electric field
„Ey component… and the module of the electric field „E… in the
standard WR-975 waveguide with cz=1.25�z „red color repre-
sents the higher normal of the electric field/positive Ey compo-
nent; blue color represents the lower normal of the electric
field/negative Ey component…
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coupled problems, the hybrid FE/BE method is significantly more
efficient than the FEM, owing to the fact that the matrix B2 is a
constant matrix and needs to be decomposed only once for the
entire time matching calculations. Lacking specific data, the test
was done by assuming that the dielectric property is a linear func-
tion of temperature. In contrast, if the FEM is used for the elec-
tromagnetic calculations, the solution of the mutually coupled
problems would require the �LD� decomposition of the large FE
matrix at every iteration over every time step, which is computa-

tionally very expensive.
Calculations using the FE/BE-FE model described above have

been performed for many different cases. One case �see Table 2� is
selected here. Figure 7 shows the �E� distribution in the MW ap-
plicator from different angles of view. Figure 7�b� shows the view
cut through the middle plane �the y-z plane� in the x direction,
while Fig. 7�c� shows the plane-cut view in the middle plane �the
x-z plane� in the y direction. This feature of the electromagnetic
field distribution is expected from the principle of electromagne-
tism �2�. Figure 8 compares the numerical and experimental re-
sults for the temperature distribution on the top surface of the food

Fig. 5 Dominant electric field „Ey component… distribution
along the center line of the standard WR-975 waveguide in the
propagation direction „negative z direction… obtained from the
analytical, FEM and FE/BE solutions. The result by using FE/BE
has only the bottom half part which is the FEM part.

Fig. 6 Electric field distribution „Ey component… for the semi-
infinite metallic slab and part of induction heating coil

Table 1 Edge number and memory requirement for solving the
same problem by using FEM and FE/BE

Table 2 Thermophysical properties used for calculations

Fig. 7 Electric field „�E�… distribution in the industrial MW ap-
plicator loaded with a food package „140Ã100Ã30 mm…. The
top part of the MW applicator is the standard MR-975 feeding
waveguide with the height of 522.9 mm and the bottom cavity
dimensions „496Ã192Ã100 mm3

….
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load in the microwave applicator. The temperature measurements
were obtained using an infrared camera. Examination of the figure
shows that two hotspots appear around two sides of the boundary
in the x direction and a small lower hotspot appears at the center
of x-y plane’s top surface. It is noted here that the color codes are
different because two different types of software are used to plot
the experimental and numerical data. The highest and lowest tem-
peratures in the numerical and experimental results are also given
in Fig. 8. Clearly, the numerical results agree very well with the
experimental measurements. The heating pattern is attributed to
the fact that the microwaves undergo multiple reflections on the
wall and the food load when the wave is launched into the bottom
cavity, which is a multimode applicator. It is thought that this
multimode applicator is configured with two major kinds of reso-
nant frequencies. One frequency induces the high hotspots on two
sides of the boundary, while the other yielded the lower hotspot at
the center of the food package.

6 Conclusion
This paper has presented an integrated 3D model for electro-

magnetic and thermal analysis of the microwave heating process
for packaged foods in a pilot microwave applicator of an indus-
trial scale. The edge-based hybrid finite/boundary element method
was used for the solution of the Maxwell equations in frequency
domain, while the node-based finite element method is used to
model the thermal transport in microwave-heated food packages.
The hybrid finite element/boundary element method uses an itera-
tive procedure, which allows a reduction of bandwidth of the re-
sultant matrix. Further testing confirms that about ten elements per
wavelength are needed to obtain an accurate solution for micro-
wave processing problems. Numerical simulations were made for
food packages under irradiation by microwaves in air. Experi-
ments were conducted in an industrial microwave applicator, and
measured temperature distributions compare well with the nu-
merical results obtained from the integrated 3D electromagnetic/
thermal model. The hybrid FE/BE method has significant memory
and excution time advantages over the more common all FE

method for microwave heating calculations. The method is com-
putationally efficient for the electromagnetic-thermal problems
during microwave thermal processing.
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Nomenclature
D � Electric flux density
E � Electric field
H � Magnetic density
f � Frequency
J � Current density
k � Wave number
T � Temperature

Cp � Specific heat
Q � Heat source
G � Green’s function

G� � Dyadic Green’s functions

Greek
� � Density

 � Electrical skin depth �
=�2/��0��
� � Angular frequency
� � Electrical conductivity
	 � Computational domain
�0 � Permittivity of free surface
�0 � Magnetic permeability of free space
� � Thermal conductivity

�s � Stefan-Boltzmann constant
� � Emissivity
n̂ � Outnormal

Subscripts
1 � FEM domain
2 � BEM domain
3 � PEC domain
4 � Food piece
5 � Environment
i � the ith point

Subscripts
* � Complex conjugate
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Improved Two-Temperature
Model and Its Application
in Ultrashort Laser Heating
of Metal Films
The two-temperature model has been widely used to predict the electron and phonon
temperature distributions in ultrashort laser processing of metals. However, estimations
of some important thermal and optical properties in the existing two-temperature model
are limited to low laser fluences in which the electron temperatures are much lower than
the Fermi temperature. This paper extends the existing two-temperature model to high
electron temperatures by using full-run quantum treatments to calculate the significantly
varying properties, including the electron heat capacity, electron relaxation time, electron
conductivity, reflectivity, and absorption coefficient. The proposed model predicts the
damage thresholds more accurately than the existing model for gold films when compared
with published experimental results. �DOI: 10.1115/1.2035113�

Keywords: Ultrashort Laser, Quantum Mechanics, Metal Thin Film, Two-Temperature
Model

1 Introduction
In the past two decades, the ultrashort �typically �10 ps� laser

heating of metals and its nonequilibrium energy transport have
been very active research topics �1–12�. Nonequilibrium between
electrons and phonons is already significant on the picoscecond
time order, in which the electron temperature can be much higher
than that of the lattice �1,5,7�. The energy transport process in
ultrafast laser heating of thin films consists of two stages �1,5–9�.
The first stage is the absorption of the laser energy through
photon-electron interactions within the ultrashort pulse duration. It
takes a few femtoseconds for electrons to reestablish the Fermi
distribution. This characteristic time scale, the mean time for elec-
trons to restore their states, is called the electron relaxation time.
In spite of nonequilibrium states of the electrons within this char-
acteristic time, the temperature of the electrons is still numerically
valid in the limit when the pulse duration is much longer than the
electron relaxation time, which is proved by a model using the full
Boltzmann transport theory �1�. Within the duration of a single
ultrashort pulse, the change of lattice temperature is generally
negligible.

The second stage is the energy distribution to the lattice through
electron-phonon interactions, typically on the order of tens of pi-
coseconds. Although the electron-phonon collision time may be
comparable to the electron-electron collision time, it takes much
longer to transfer energy from free electrons to phonons, because
the phonon mass is much greater than the electron mass. The
characteristic time for the free electrons and the lattice to reach
thermal equilibrium is called the thermalization time. In this pro-
cess, a phonon temperature is used to characterize the Bose dis-
tribution.

This two-temperature concept described above was validated
by many experiments �3,7,10–14�. Accordingly, the two-
temperature model is widely used for the ultrashort laser process-
ing of metals �5–9,15,16�. Especially, Qiu and Tien �5–7� and Qiu
et al. �8� group has made excellent theoretical and experimental

contributions in this area. However, in the existing two-
temperature model, the estimations of the following important
properties are limited to temperatures that are much lower than the
Fermi temperature TF that is measured to be 5.9�104K for gold
�5–8�

• Electron heat capacity Ce=�Te �7� where Te is the electron
temperature and � is the electron heat capacity constant.
This estimation is limited to 0�Te�0.1 TF �17�.

• Electron relaxation time �e=3me / ��2nekB
2Te� /k�Te� where

me is the nonrelativistic mass of a free electron; ne is the
density of the free electron, which is 5.9�1022 cm−3 for
gold; and kB is the Boltzmann constant �7�. This estimation
is based on Ce=�Te and therefore limited to 0�Te
�0.1 TF �5,17,18�.

• Electron heat conductivity ke= �Te /Tl�keq�Tl� where keq is
the electron heat conductivity when the electrons and
phonons are in thermal equilibrium; and Tl is the lattice
temperature �7�. This estimation can be derived and is lim-
ited to TD�Te�0.1 TF where TD is the Debye temperature
of the phonon �17�.

• Reflectivity �Te / ��Te�max��R / ��R�max �8� where R is the
reflectivity. This estimation is limited to 300 K�Te
�700 K �8�. Further, ��Te�max and ��R�max are unknown
before the estimation.

The aforementioned estimations are limited to low temperatures
relative to the Fermi temperature �17�. However, at a fluence near
or above the threshold fluence, the electron temperature in metals
heated by an ultrashort laser pulse can be comparable to the Fermi
temperature. Hence, the two-temperature model is suitable only
for low fluences and cannot be used to correctly predict the dam-
age threshold in which the electron temperatures are much higher
than 0.1 TF.

This paper extends the existing estimations of optical and ther-
mal properties to high electron temperatures by the following im-
provements: �1� using the Fermi distribution, the heat capacity of
free electrons is calculated; �2� the free electron relaxation time
and electron conductivity are determined by using a quantum
model derived from the Boltzmann transport equation for dense
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plasma; and �3� the free electron heating and interband transition
are both taken into account using a modified Drude model with
quantum adjustments to calculate the reflectivity and the absorp-
tion coefficient. The proposed two-temperature model is em-
ployed to calculate the heating process of thin gold films until
melting occurs, which is assumed to be the initiation of damage.
The predicted damage threshold fluences for 200 nm gold film
using the proposed model are in good agreement with published
experimental data. The damage threshold fluence as a function of
pulse duration is also studied.

2 Theory

2.1 Two-Temperature Model. This paper considers the laser
pulse duration in 140 fs–100 ps that are much longer than the
electron relaxation time �a few femtoseconds�. Hence, the electron
temperature, characterized by the Fermi distribution, can be em-
ployed �1�. In this study, the laser beam diameter �tens to hun-
dreds of micrometers� is much greater than the optical penetration
depth �tens to hundreds of nanometers� and electron penetration
depth �tens to hundreds of nanometers� in the nanoscale-thickness
thin films and, hence, a one-dimensional model is accurate enough
to describe the physical phenomena. The two-temperature model
is given below

Ce�Te�
�Te

�t
= ��ke�Te� � Te� − G�Te − Tl� + S�z,t� �1�

Cl�Tl�
�Tl

�t
= G�Te − Tl� �2�

where S represents the laser source term, Cl is the lattice heat
capacity, and G is the electron-lattice coupling factor estimated by
�5�

G =
�2menecs

2

6��Te�Te
�3�

where cs is the speed of sound in bulk material calculated by

cs =� B

�m
�4�

where B is the bulk modulus and �m is the density.

2.2 Free Electron Heat Capacity. In a wide range of elec-
tron temperatures, the full-run quantum treatment should be used
to calculate the free electron heat capacity. The average number of
electrons �nk� in energy state �k obeys the following Fermi distri-
bution:

�nk� =
1

e	�Te���k−
�Te�� + 1
�5�

where 	�Te�=1/kBTe�t ,z� and 
 is the chemical potential. For
free electron gas, the chemical potential can be calculated by �17�


�ne,Te� = �F�ne�	1 −
�2

12

 kBTe�t,z�

�F�ne�
�2

+
�2

80

 kBTe�t,z�

�F�ne�
�4�

�6�

where the higher order terms are neglected, z is the depth from the
thin film surface, and �F is the Fermi energy. Strictly speaking,
Eq. �6� is valid for free electrons in equilibrium states only. The
free electrons could be disturbed from the Fermi-Dirac distribu-
tion by a femtosecond laser pulse. However, when the pulse du-
ration is much longer than the free electron relaxation time, Eq.
�6� is still a good approximation, which is similar to the treatment
for the electron temperature in this condition �1�. The Fermi en-
ergy is determined by �17�

�F = 
 �hc�2

8mec
2�
 3

�
�2/3

ne
2/3 �7�

where c is the speed of light in vacuum. The average kinetic
energy per electron in J, ���, is calculated by

��� =



k

�nk��k

Ne
=

�
0

�
1

e	�Te���−
�Te�� + 1
�����d�

�
0

�
1

e	�Te���−
�Te��+1
����d�

�8�

where � is the kinetic energy of a free electron, Ne is the total
number of free electrons, and ���� is the density of states given by

���� =
8�2�me

3/2

h3
�� �9�

where h is the Planck constant. The heat capacity can be deter-
mined by

Ce�Te� = ne
 ����
�Te

�
V

�10�

where V is the volume. In 0�Te�0.1 TF, Eqs. �5�–�10� can be
simplified to the following expression �17�:

Ce�Te� =
�2ne

2

 kBTe

�F
�kB � �Te �11�

where � is the electron heat capacity constant. Equation �11� has
been widely employed in the two-temperature model �5–9�. For
comparison purpose, the average kinetic energy and specific heat
of an ideal electron gas are given below

��� =
3

2
kBTe, Ce =

3

2
nekB �12�

2.3 Free Electron Heat Conductivity and Relaxation Time.
The free electron heat conductivity is expressed by the following
Drude theory of metals �17�:

ke�Te� =
1

3
�e

2�Te��e�Te�Ce�Te� �13�

where �e
2 is the mean square of electron speed. In this study, �e

2

and Ce are determined directly by the Fermi distribution based on
Eqs. �5�–�10�. In Eq. �13�, the scattering effects are indirectly
considered through the calculation of the free electron relaxation
time. In TD�Te�0.1 TF and using the values of �e

2 and Ce for an
ideal gas, Eq. �13� can be simplified to �e=3me / ��2nekB

2Te�k�Te�
�17� that is used in Ref. �7�.

In this study, by considering metals as dense plasma
�1,17,19,21–23�, the free electron relaxation time is calculated as
follows by a quantum treatment derived from the Boltzmann
transport equation �20,21�:

�e�t,z� =
3�me�kBTe�t,z��3/2

2�2��Z*�2nee
4 ln 


�1 + exp�− 
�Te�/kBTe�t,z���F1/2

�14�

where e is the electron charge, Z* is the ionization state and is one
for gold, F1/2 is the Fermi integral, and ln 
 is the Coulomb loga-
rithm determined by

ln 
 =
1

2
ln	1 + 
bmax

bmin
�2� �15�

where the maximum �bmax� and minimum �bmin� collision param-
eters are given by
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bmax =
�kBT/me�1/2

max��,�p�
, bmin = max
Z*e2

kBT
,

�

�mekBT�1/2� �16�

where �=h /2� is the reduced Planck constant, � is the laser
frequency, and �p is the plasma frequency defined by

�p =� nee
2

me�0
�17�

where �0 is the electrical permittivity of free space.

2.4 Optical Properties. A critical task is to determine the
laser source term in Eq. �1�. A general expression for laser inten-
sity �W/cm2� I inside the bulk material for both nonlinear and
linear absorptions is �21,22�

I�t,z� =
2

��/ln 2

J

tp
�1 − R�t��exp	− �4 ln 2�
 t

tp
�2

−�
0

z

��t,z�dz�
�18�

where J is the laser fluence in J /cm2, tp is the pulse duration, R is
the reflectivity, and ��t ,z� is the absorption coefficient. If the ab-
sorption coefficient is assumed to be a constant, using the defini-
tion that optical penetration depth �=1/� the laser source term
�W/cm−3� is simplified to the following expression commonly
used in the existing model �5–8�:

S�t,z� =
0.94J

tp�
�1 − R�t��exp	− 2.77
 t

tp
�2

−
z

�
� �19�

Rethfeld et al. have demonstrated that the ultrashort laser-metal
interaction can be well described by laser-plasma interactions �1�.
According to the Drude model for free electrons � the electrical
permittivity �dielectric function� of metals modeled as a plasma, is
expressed as �23�

c�t,z� = �1�t,z� + i�2�t,z� = 1 + 
 nee
2

me�0
�
− �e

2�t,z� + i�e�t,z�/�
1 + �2�e

2�t,z�
�

= 1 + �p
2
− �e

2�t,z� + i�e�t,z�/�
1 + �2�e

2�t,z�
� �20�

Equation �20� shows how the plasma frequency in Eq. �17� is
defined.

The relationship between the complex refractive index f and the
complex electrical permittivity is given by


 c

v
� = f = �f1 + if2� = �� = ��1 + i�2 �21�

where c is the velocity of light in vacuum, v is the velocity of light
in the material, f1 is the normal refractive index, and f2 is the
extinction coefficient. Thus, the f1 and f2 functions can be derived
as

f1�t,z� =��1�t,z� + ��1
2�t,z� + �2

2�t,z�
2

,

f2�t,z� =�− �1�t,z� + ��1
2�t,z� + �2

2�t,z�
2

�22�

The reflectivity and the absorption coefficient of the metal are
determined by the following Fresnel expression:

R�t� =
�f1�t,0� − 1�2 + f2

2�t,0�
�f1�t,0� + 1�2 + f2

2�t,0�
, ��t,z� =

2�f2�t,z�
c

=
4�f2�t,z�

�

�23�

where � is the wavelength of the laser.
However, the Drude model for metals, Eq. �20�, does not con-

sider the interband transition and the Fermi distribution. For gold,
the d-band transition plays a critical role in the optical properties

�4,14�. In d-band transition, electrons jump from the top of the d
band to the unoccupied states near the Fermi level in the conduc-
tion band �p band�. For noble metals like gold, the contribution of
interband absorption to optical properties can be directly added to
the Drude model, Eq. �20�, for electrical permittivity �25�. Experi-
ments have shown that the transient reflectivity of gold films is
directly related to the change in the occupation number of elec-
trons near the Fermi energy �14�. The change in occupied state
distributions near the Fermi level caused by electron heating is
called the Fermi distribution smearing �14�. Eesley estimated the
distribution of occupied electronic states near the Fermi energy by
�14�

�F =
1

1 + exp��h� − ��F − �d��/kBTe�
�24�

where � is the laser frequency; ��F−�d�=2.38 eV for gold �4� is
the difference between the Fermi energy and the d-band energy
�d. It is seen the absorption of photon energy h� is directly af-
fected by the d-band transition. The smearing of the electron dis-
tribution is given by

��F = �F�h�,Te� − �F�h�,T0� �25�
which is linearly proportional to the imaginary component of the
electrical permittivity in Eq. �20� �4�

��2

�2
=

��F

�F
�26�

where T0 is the room temperature �4�. After adding ��2 to �2 in
Eq. �20�, the reflectivity and the absorption coefficient with the
consideration of d-band transition can be determined by Eq. �23�.

2.5 Phonon Heat Capacity. The above discussion addresses
the temperature dependent properties of electrons. Similarly, the
phonon heat capacity in Eq. �2� is also temperature dependent
which can be calculated by the well-known quantum treatment,
the Debye model �24� in which the average kinetic energy of
phonons ��p� is calculated by �24�

��p� =�
0

�max 6�h

nacs
3

�3

eh�/kTl − 1
d� �27�

where na is the phonon number density and �max is the maximum
frequency of phonons calculated by

�max = 
 3

4�
�1/3cs

a
�28�

where a is the average interatomic spacing, a= �V /N�1/3= �na�−1/3.
The molar heat capacity of phonons can be calculated by

Cl�Tl� = 2na
 ���p�
�Tl

�
V

�29�

where NA is the Avogadro constant. The factor of 2 appears in Eq.
�29� is used to account for both the kinetic energy and potential
energy that are statistically equal in an ideal-lattice metal.

The two equations Eqs. �1� and �2� are solved by a fully im-
plicit schedule with iterations at each time step for temperature-
dependent thermal properties until convergence is achieved. Dif-
ferent grid sizes and time step sizes are employed to assure the
final results are consistent.

3 Results and Discussion

3.1 Heat Capacity. First, some general discussions are pre-
sented about the heat capacities of free electrons and phonons in
certain temperature ranges. Figure 1�a� demonstrates the signifi-
cant differences in average kinetic energy of free electrons be-
tween the quantum treatment using Eqs. �5�–�10� and the ideal gas
approximation using Eq. �12� for gold. At 300 K, the average
kinetic energies of free electrons predicted by the quantum treat-
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ment and classical approach are 3.3 and 0.039 eV, respectively,
and they are different by about two orders of magnitude. It is seen
only at temperatures much higher than the Fermi temperature
�5.9�104 K for gold�, the classical approach of Eq. �12� is valid.
Figure 1�b� shows the significant differences between the ideal gas
approach using Eq. �12�, the approximation using Eq. �11�, and
the quantum treatment using Eqs. �5�–�10� for electron specific
heat per mole. Equation �11� for Te�TF and Eq. �12� for Te
�TF have been discussed for femtosecond laser ablation of metals
�26� and yet the full-run quantum using Eq. �5�–�10� was not used
in their work. At temperatures much lower than the Fermi tem-
perature, the results by quantum treatment overlap with the ap-
proximations using Eq. �11� that is widely employed in the two-
temperature model �5–8�. This implies when Te�TF, Eqs.
�5�–�10� can be simplified to Eq. �11�. Figure 1 clearly shows the
necessity of quantum treatment for free electrons in the ultrashort
laser-metal interaction.

On the other hand, the variation of gold phonon heat capacity in
�300 K, 1337.33 K� calculated by the Debye model is insignifi-
cant, as shown in Fig. 2. In �300 K, 1337.33 K� for gold phonons,
the molar phonon heat capacity predicted by the quantum treat-
ment �the Debye model� is similar to that predicted by the classi-
cal estimation �the Law of Dulong and Petit� that states the molar
heat capacity of metals is about 3Ru, where Ru is the universal gas
constant �24�. In fact, this is expected as the Debye temperature
�the quantum characteristic temperature of phonons� of gold is
165 K that is low as compared to the phonon temperature. Hence,

the lattice heat capacity of gold in the calculation can be reason-
ably considered as a constant. Note the gold heat capacity is the
sum of the free electron heat capacity and phonon heat capacity.

3.2 Fermi Distribution Smearing. Figure 3 shows the
smearing of electron distributions as a function of temperature at

Fig. 1 The differences between different treatments for gold:
„a… average free electron kinetic energy in electronvolts and „b…
molar free electron specific heat

Fig. 2 Molar phonon specific heat predicted by different
approaches

Fig. 3 Distribution of occupied electronic states near the
Fermi energy: „a… electronic occupy and „b… change in elec-
tronic occupancy
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different laser wavelengths in which T0 is assumed to be 300 K.
When the photon energy for a given wavelength, for example,
1.18 eV �1053 nm�, is smaller than the difference between the
Fermi energy and the d-band energy, ��F−�d�=2.38 eV for gold,
Fig. 3�a�. This is true for all lasers with wavelengths above about
522 nm. On the other hand, when the photon energy, for example,
3.18 eV �390 nm�, is higher than ��F−�d�, the Fermi distribution
of occupied states increases in the heating process, which in turn
increases the electron-phonon coupling. For both cases, as the
electron temperature increases, the Fermi distribution of occupied
states approaches a constant 0.5. Figure 3�b� shows the change in
electronic occupancy as a function of laser wavelength. The merge
of different curves near the 2.38 eV photon energy confirms the
discussion given above.

3.3 Damage Threshold Fluence. This study calculates a 140
fs, 1053 nm laser heating of 200 nm gold film by using both the
existing two-temperature model �5–8� and our proposed model.
For this condition, the experimental threshold fluence is
0.43±0.04 J /cm2 �27�. By assuming the damage starts when the
maximum lattice temperature reaches the melting temperature,
1337.33 K for gold, our model gives 0.45 J /cm2 for the threshold
fluence, while the existing two-temperature model gives
0.75 J /cm2.

At 0.45 J /cm2, the temperature distributions of the electrons
and the lattice predicted by the proposed model are shown in Fig.
4. As shown in the figure, the electron temperature can reach as
high as 2.12�104 K which is well beyond the electron tempera-
ture range �0�Te�0.1 TF�. Thus, in the existing model �5–8�, the
simplified estimations of electron heat capacity, electron heat con-
ductivity, electron relaxation time, and reflectivity, as mentioned
earlier, may not be adequate.

3.4 Comparisons Between the Existing Model and the Pro-
posed Model. At 0.05 J /cm2, a low laser fluence with respect to
the threshold fluence, the calculated results for a 200 nm gold film
by the existing model and the proposed model are very similar in
both the electron temperatures and phonon temperatures, as
shown in Fig. 5. It is seen the highest electron temperature 3347 K
predicted by the proposed model, is within the low electron tem-
perature range for free electrons. In low fluences, the similarities
between results from the existing model and the proposed models
are expected, because the full-run quantum treatment can be sim-
plified to the existing model for low electron temperatures. The
slight difference between the predictions of the two models is
mainly caused by the different treatments in reflectivity. In the
existing model, reflectivity estimation �Te / ��Te�max
��R / ��R�max is limited to 300 K�Te�700 K that is much
lower than the highest electron temperature 3347 K, under
0.05 J /cm2.

On the other hand, at 0.2 J /cm2, a fluence comparable to the
threshold fluence, significant differences between the two models
are observed in Fig. 6. This confirms the need to estimate the
thermal and optical properties with quantum treatments for the
ultrashort laser heating of metals at fluences comparable to the
threshold fluence.

3.5 Effect of Pulse Duration. This study also investigates the
effect of pulse duration on the damage threshold. As shown in Fig.
7, the proposed model significantly increases the prediction accu-
racy of the damage thresholds compared with the existing model.
At the wavelength of 1053 nm, the damage thresholds of 200 nm
film predicted by the proposed model are almost independent of
the pulse duration in 140 fs–100 ps, which is confirmed by the
experimental data �27�. As shown in Fig. 7, the predicted trend of
the damage thresholds by our proposed model can be roughly
divided into two ranges: 140 fs–10 ps and 10 ps–100 ps with the
turning point around 10 ps. It is expected for the threshold fluence
to increase with the increase of the pulse duration in 10 ps–100 ps.
However, the properties of the 200 nm thin film are quite different

with its bulk material when the thin film thickness is comparable
to the optical penetration depth. In 140 fs–10 ps, for the 200 nm
thin film, the shorter pulse duration leads to�1� the higher electron
temperature and hence higher heat conductivity, causing a more
uniform temperature distribution in the thin film after the thermal-
ization time at which the maximum lattice temperature is ex-
pected. This factor tends to increase the threshold fluence; and �2�
the stronger transient changes in the reflectivity of gold film dur-
ing the 1053 nm pulse irradiation that tends to decrease threshold
fluence �16�. Hence, roughly speaking, these two factors balance
each other, which makes the threshold fluence in 140 fs–10 ps
almost independent of pulse duration.

4 Conclusions
This study introduces full-run quantum treatments to the two-

temperature model for several critical optical and thermal proper-
ties, including the electron heat capacity, electron relaxation time,
electron conductivity, reflectivity and absorption coefficient. The
proposed model releases the low temperature limitation of the
existing estimations on optical and thermal properties and effec-
tively extends the application range to high laser fluences. On the
other hand, at low temperature ranges, the proposed full-run quan-

Fig. 4 „a… electron temperature distribution and „b… lattice tem-
perature distribution at different times predicted by the pro-
posed model for a 200 nm gold film irradiated by a 140 fs, 1053
nm pulse at 0.45 J/cm2
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tum treatments can be simplified to those employed by the exist-
ing two-temperature model, which is proved by either mathemati-
cal derivations or simulation results. The proposed model is
employed to calculate the heating process of thin gold films until
melting occurs, which is assumed to be the initiation of damage.
The predicted damage threshold fluences for 200 nm gold film by
the proposed model are in good agreement with published experi-
mental data. The predicted damage thresholds of thin films are
almost independent of pulse duration in the ultrashort ��10 ps
pulse range, as confirmed by experiments.
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Nomenclature
a � average interatomic spacing
B � bulk modulus

bmax � maximum collision parameter in Eq. �15�
bmin � minimum collision parameter in Eq. �15�

c � speed of light in vacuum
c � velocity of light in vacuum

Ce � electron heat capacity
Cl � lattice heat capacity
cs � speed of sound
e � electron charge

Fig. 5 Surface temperature as a function of time for 200 nm
gold film irradiated by a 140 fs, 1053 nm pulse at 0.05 J/cm2: „a…
the existing model and „b… the proposed model

Fig. 6 Surface temperature as a function of time for 200 nm
gold film irradiated by a 140 fs, 1053 nm pulse at 0.2 J/cm2: „a…
the existing model „b… the proposed model

Fig. 7 Damage threshold fluences of 200 nm gold film pro-
cessed by a 1053 nm laser at different pulse durations
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kB � Boltzmann constant
f � complex refractive index

f1 � normal refractive index
f2 � extinction coefficient
G � electron-lattice coupling factor
h � Planck constant
� � reduced Planck constant
I � laser intensity
J � laser fluence in J /cm2

kB � Boltzmann’s constant
ke � electron conductivity

keq � electron heat conductivity in the electron-
phonon thermal equilibrium

me � nonrelativistic mass of a free electron
na � phonon number density
ne � density of the free electrons

�nk� � average number of electrons in energy state �k
NA � Avogadro constant
Ne � Total number of free electrons
R � reflectivity

Ru � universal gas constant
S � laser source term
t � time

tp � pulse duration
TD � Debye temperature
Te � electron temperature
TF � Fermi temperature
Tl � lattice temperature
T0 � room temperature
V � volume

ve
2 � mean square of electron speed

vs � sound speed in the metal
Z* � ionization state

Greek Symbols
� � absorption coefficient
� � optical penetration depth
� � complex dielectric function

�0 � electrical permittivity of free space
�1 � real part of the dielectric function
�2 � imaginary part of the dielectric function

��� � average electron kinetic energy
��p� � average phonon kinetic energy

�d � d-band energy
�F � Fermi energy
�k � electron energy state

ln 
 � Coulomb logarithm in Eq. �14�
� � electron heat capacity constant in Eq. �11�
� � wavelength of the laser

 � chemical potential
� � laser frequency

vmax � maximum frequency of phonons
� � density of states

�F � distribution of occupied electronic states
�m � density

� � electron relaxation time
� � laser frequency

�p � plasma frequency
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Surface frosting from atmospheric humidity under natural convec-
tion is encountered in conventional refrigeration systems, cryo-
genic surgery, and cryogenic stress relief of die casting metal
forming applications. To advance the predictability of frost initia-
tion and formation processes, this study reports a microscopic
analysis of frost growth on a flat surface during the onset period
of freezing when subcooled droplets are formed and changed to
the ice phase. The onset of freezing is quantified by the mean
droplet size and ice particle fractions at a critical time (when
water droplet freezing point is reached) with the aid of a video
microscope. An early-stage frost formation model with effective
parameters is demonstrated to provide the important information
for the transition to the steady-growth model. The model results
are compared with the measured air-frost surface temperatures at
different cooling and ambient boundary conditions, using holo-
graphic interferometry. The comparison between the model pre-
diction and experimental results demonstrates the sensitivity of
effective parameters in simulating the frost thickness and air-frost
interface temperature. �DOI: 10.1115/1.2033901�

Introduction
Frost formation is encountered in many engineering applica-

tions. Under design and operating conditions of various freezers
and refrigeration systems, frost formation on evaporator surfaces
�air-refrigerant heat exchanger� occurs inevitably, reducing the
heat transfer rate and blocking the air passage. Recent develop-
ments in medical research and practice, cryogenic surgery involve
formation of frost under natural convection. The quality of the
surgery and the performance of the related medical system may be
influenced by the uncertainty of the frosting effect �1,2�. Although

a wealth of literature has been devoted to the subject �3�, there
still lacks a satisfactory model that is capable of accurate analysis
or simulation of a given frosting process. It is evident that due to
the complexity of physical phenomena occurring during a frost
formation process, there is a need to provide more reliable infor-
mation about the critical parameters, serving as indicators of frost
formation process, which can then be used to develop a better
defrosting strategy, or new devices to aid truly frost-free systems.

The purpose of this brief is to provide frost-air interface param-
eters, especially the frost “surface” temperature, as a quantitative
measure to characterize the frost properties. With the aid of com-
parison with a numerical simulation, we are to demonstrate the
significance of those parameters such that the sensitivity of frost-
air interface temperature may be used either as an experimental
signal or a simulation predictor. Therefore, it may lead to future
studies on defrosting sensors and frost formation model improve-
ment.

Theoretical Background. A frost formation process studied is
defined here as starting from when the temperature of the cooling
plate decreases from an initial ambient condition �either above or
below freezing� and reaches a steady state. The condensing drop-
lets in a subcooling state form, coalesce, and change to ice par-
ticles when a critical time, tc, is reached. The critical time is a
function of ambient conditions �temperature, humidity, natural or
forced convection� and cold surface temperature and surface
roughness. In Fig. 1�a�, the mean droplet diameter, d, and the
mean length scale, �, of the nucleation site are defined at the
critical time �4�, where �=�� /�d /2 and � is the areal fraction of
droplets. This moment will be marked as the initial time for the
model discussed below.

Once the drop-wise condensation �DWC� period reaches the
critical time, tc, the solidification and tip-growth �STG� period
starts and continues until a transitional time, tt, is reached when a
relatively uniform porous layer of frost forms. During the STG
period, we propose a simplified model based on �3� to relate the
parameters defined at critical time tc, to the initial conditions for
the STG period. Because of the nature of nonuniform tip growth
on individual droplets, especially for tiny ones that are still in
liquid phases, the average value of � based on the areal droplet
fraction is not representative of the actual volumetric fraction of
frost, �i=�f /�i. Therefore, we choose �eff=�� /�ideff /2, where
�eff and deff are defined in Fig. 1�c� in such a way that the total
mass of ice accumulation is equal for both definitions. As an ap-
proximation, we adopt the following treatment: deff=d and �i is
extrapolated from the frost measurement, as will be discussed
further. The above-defined STG process and parameters allow us
to use the early-growth model developed in �4� to simulate the
frost formation during the STG period along with the model that
simulates the densification and bulk-growth �DBG� period.

Methods of Investigation

Experiments. Figure 1�b� shows the experimental apparatus
used to investigate the microscopic characteristics of frost forma-
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tion. The test section consists of a test surface, an aluminum block
of 40�40�1.6 mm, insulated at sides, a thermoelectric cooling
module with the required heat-sink heat exchanger, and the insu-
lation layers, as shown in Fig. 1�b�. The test surface can be cooled

to temperatures as low as −40°C, using a thermoelectric cooling
module with a heat-sink heat exchanger. The thermoelectric cool-
ing module is mounted on the heat-sink heat exchanger using
thermally conductive double-sided adhesive tape. The tempera-

Fig. 1 Schematics of „a… the model for the initial conditions for the solidification and tip-growth „STG… period, „b… the
microscopic video system characterizing microdroplets/particles and the test section, and „c… the holographic interfer-
ometry system
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tures of the test surface, heat sinks, and the air temperature above
the test surface are measured using thermocouples, which are re-
corded and monitored by a PC computer. A Fisher Scientific hy-
grometer is used to measure the ambient temperature and relative
humidity.

The OMEGA cement-on style-2 thermocouples installed be-
tween the test surface and the aluminum block have the uncer-
tainty of ±0.1°C. All of the other thermocouples used in the
present study are OMEGA T-type precision fine wire thermo-
couples with the uncertainty of ±0.5°C. The uncertainty of the
heat flux through the test plate obtained based on the temperature
measurement is estimated to be round 3%. The uncertainty of the
effective thermal conductivity of frost layer measurement is esti-
mated to be less than 5%. A refrigerated circulator is used to
supply the ethylene glycol solution �50%� to the heat-sink heat
exchanger and can be controlled with ±0.1°C.

The microscope video system �InfiniVar� is used to measure the
condensate droplet sizes and areal fractions, which are recorded
digitally �Fig. 1�b�� with the system resolution of 0.5625 �m and
accuracy of 1.08 �m. A two-exposure, holographic interferometry
technique is used to determine the air-frost interface temperature
�Fig. 1�c�� at a desired time after the test starts. The reference
temperature is measured by a pair of thermocouples �within
±0.5°C� mounted at the location of 25.4 mm above the cold plate
surface. The overall uncertainty on the temperature determined by
holographic interferometry is estimated being less than ±0.6°C.
The measurement of the distance, x, of each isotherm to the cold
plate surface was done by digitizing the image of a size of 2048
�1536 pixels with an uncertainty of 3.5�10−5 m. The pattern of
drop-wise condensation and resulting ice particle distribution dur-

ing the early frosting period is analyzed by applying local fractal
dimension concepts �5�. A numerical code is developed to scan the
images to arrive at the characteristic diameter.

Numerical Model for STG and DBG Periods. The governing
equations and major boundary conditions of those two models are
similar to the ones in Ref. �6�. The only difference is that the heat
transfer coefficient in this study is calculated from the Raleigh
number based correlation for natural convection rather than that

Table 1 Test conditions

Fig. 2 „a… Critical time and „b… temperature under different conditions, and „c… droplet diameter and site-
length scale for nucleation sites and ice fraction at the critical time
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based on the Reynolds number. The DBG model assumes the frost
as a continuous porous medium with variable thermal and geo-
metric properties. In the numerical calculation, the root-mean-
square convergence within 10−4% is obtained for the cases stud-
ied. Extensive test runs have been carried out to come up with a
better compromise between accuracy and computational effi-
ciency requirements.

Results and Discussion

Transition From Drop-Wise Condensation to Solidification.
A series of microscopic observations is conducted under the dif-
ferent steady-state temperature, Tws. The test conditions are listed
in Table 1. The tests have two types of initial surface state, dry
and wet. The initial dry surface means that the test is not started
until the surface is carefully dried using the soft lens paper with
ethanol. The initial wet surface means that the test starts on the
surface with a microlayer of moisture. For cases No. 1 and 2 in
Table 1, the steady-state temperatures are −4°C; and the con-
densed, subcooled water on the surface never freezes. The critical
times and temperatures for all other cases are shown in Figs. 2�a�
and 2�b�. It is shown that the critical time is reached faster for the
lower steady-state temperature, and the corresponding critical
temperature is also lower �Fig. 2�b��. For most cases, the critical
time for the initial dry surface is reached earlier than under the
initial wet surface. The difference decreases with the decrease in
the steady-state temperature. The critical temperatures are almost
the same for the high steady-state temperature. The critical tem-
perature for the initial dry surface is lower than that of wet surface
when the steady-state temperature is lower than −15°C. For this
case, the difference increases with the decrease in the steady-state

temperature. The results of fractal analysis of droplet distribution
at the critical times indicate the mean diameters of droplets, d, are
within the range of 37.4–46.5 �m, shown in Fig. 2�c�. There is a
tendency for the mean diameter to slightly increase with the de-
crease in the steady-state temperature. On the other hand, the
mean length scale of nucleation site, �, is less sensitive to the cold
surface temperature. The value is within the range of
44.5–47.6 �m. The ice fraction on the surface at the critical time
is within the range of 0.556–0.763. The tendency to increase with
the decrease in the steady-state temperature is clearly seen in Fig.
2�c�.

Air-Frost Interface Temperature. Figure 3�a� shows a typical
holographic image to measure the distribution of air temperature
in the field above the cold/frost surface. The first exposure was
taken under the condition of uniform temperature distribution be-
fore the surface is cooled. The second exposure was taken a
60 min after the test started. A thin black horizontal line with
small waves in the bottom area clearly shows the air-frost inter-
face. The fringe pattern clearly shows the stratified temperature
field between the ambient temperature and air-frost interface tem-
perature. Figure 3�b� shows the temperature distribution of the
thermal boundary layer in the central location of the image shown
in Fig. 3�a�. With the temperature profile T�x� of the air above the
frost surface, the heat transfer coefficient between the frost surface
and ambient air by the natural convection can be determined as
follows: h=−k�dT /dx� / �Ts−Ta�. A series of the holographic im-
ages was taken for different frost accumulation times but under
the same desired ambient and cold surface temperatures. This ar-

Fig. 3 Typical holographic image: dry surface—„a… holo-
graphic interferometry fringes and „b… temperature profile in
the thermal boundary layer. Ta=23°C, RHa=61%, Tw=−18°C, t
=60 min

Fig. 4 „a… Variation of temperature difference between air-frost
interface and cold surface with time, „b… variation of thickness
of frost layer with time, and „c… comparison of the simulation
and experiment results of the temperature difference between
ambient and air-frost interface: dry surface, ŠTa‹=23.2°C,
ŠRHa‹=56%, ŠTw‹=−32.8°C
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rangement is made to simulate a continuous frosting process.
There is a certain variation in ambient and cold surface tempera-
ture due to the setting and control limitation. Therefore, the results
in Fig. 4 were reported as under average ambient and surface
conditions to indicate the trend.

Figure 4�a� shows that the temperature difference between the
air-frost interface and the cold surface increases with the growth
of frost layer. In the initial period the temperature difference in-
creases slowly as the frost growth rate is high. It tends to approach
a quasisteady fashion later on. The variation of frost layer thick-
ness is shown in Fig. 4�b�.

Comparison With Simulation Results. The model simulation
results are compared with the measurements and shown in Fig. 4.
Considering the variation in boundary conditions for each experi-
mental data point, two different simulations are conducted. One is
that the experimental conditions for the individual experimental
data point are used as an input in the simulation. The other simu-
lation is based on the average ambient and cold-surface tempera-
tures obtained from all the experimental data and assumed to
maintain through the entire 60 min frosting period. Table 2 shows

the specified input conditions for each simulation.
Because the frost thickness data are process dependent, i.e., the

measured thickness is the result at the end of a frosting process,
the individual data points in Fig. 4 are taken at the end of each
corresponding experimental duration. They are not taken at differ-
ent times during a same frosting process. The time indicated in the

Fig. 5 Time variations of „a… air-frost interface temperature, „b… frost layer thickness, „c…
temperature difference between air-frost interface and cold plate surface, „d… temperature
difference between the ambient and air-frost interface, „e… heat flux through frost layer, and
„f… bulk effective thermal conductivity of frost for two different cold plate temperatures:
ŠTa‹=23°C, ŠRHa‹=61%

Table 2 Parameters used in simulation
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figure for the individual results really represents the time elapsed
in the corresponding frosting process. Despite various efforts, it is
difficult to maintain the exact same initial conditions such as am-
bient temperature, coolant temperature, and cold surface thermal
and moisture conditions, for all the experiments. Therefore there
are variations in those conditions. The continuous numerical re-
sults simulate a longer period with the assumption of constant
ambient and cold surface temperatures that are taken as the aver-
age values from all the experimental data, while the simulated
individual results use the ambient, initial, and cold surface condi-
tions from the corresponding experimental process. That is why
there is a discrepancy, and the individual results compare better
because they are more accurately close to the experimental
condition.

The comparisons show that, in general, the simulation agrees
reasonably with the measurement data. The simulation slightly
overpredicts temperature differences between the air-frost inter-
face and cold plate �Fig. 4�a�� while the temperature difference
between the ambient and air-frost interface temperatures is more
consistent with the experimental result. The above comparison
illustrates a couple of important observations. One is that the in-
vestigative approach, combining both numerical modeling and ex-
perimental input, allows us to study the detailed heat and mass
transport associated with the frosting phenomena. On the other
hand, it indicates that a more comprehensive investigation on the
general trends of indicative parameters characterizing the STG
period is needed, because the generalization of effective param-
eters, �eff and �i, to other conditions remains unsolved despite the
advance in determining deff. The results clearly indicate that there
are significant variations in the temperature difference between
the frost surface temperature and cooling surface temperature. For
the example shown in Fig. 4, a 4-mm-thick frost layer formation
within 1 h results in a difference of about 20°C in surface tem-
peratures under natural convection, and a rate of 0.1°C/min in
temperature increase can be observed. This sensitivity could lead
to developing advanced sensing methodology and helping quanti-
fication of latent loads on cold surfaces.

Effect of Cold Surface Temperature. If the air-frost interface
temperature can be treated as an indicator of dynamic balance
between the heat released for frost growth �i.e., the heat removed
by the cold plate� and the heat transfer from the ambient to the
frost surface, it will be of interest to see if the air-frost interface
temperature, Ts, depends on the cold plate temperature, Tw. Figure
5�a� shows the experimental results for two different cold plate
temperatures �−19° and −31°C� under the same ambient tempera-
ture condition. It can be seen that for both cases, the frost surface
temperatures are much lower than the freezing temperature and
close to the cold surface temperature during the early growth pe-
riod. That is because the frost layer was formed by subcooled or
frozen droplets at the early growth period. The frost layer was
thin, as shown in Fig. 5�b� and has relatively high effective ther-
mal conductivity. After the DBG period is reached, the air-frost
interface temperature reaches the same value for those two cases.
This indicates that the convective heat transfer rate from the am-
bient to the frost surface remains the same for both. This confirms
that the formation of frost reduces the ability of the heat transfer
equipment to remove heat from the ambient, even though the
amount heat transferred to the cold plate is higher in the case with
the lower cold plate temperature �Tw=−31°C; Fig. 5�e��. The in-
sulation effect of the frost layer can be demonstrated by the in-
crease in the temperature difference between the air-frost interface
temperature and cold plate temperature as the frost thickness in-
creases �Figs. 5�c� and 5�d��. This heat transfer degradation is
more pronounced in the Tw=−31°C case than in the −19°C case.
Using the definition of a bulk effective thermal conductance that

includes the transient effect, k̄eff=qw / ��Ts−Tw� /��, we can see

from Fig. 5�f� that k̄eff decreases to about 31% of its initial value
in a 90 min period for Tw=−31°C versus a reduction to about

22% of its initial value for Tw=−19°C. Figure 6�a� shows the heat
transfer coefficient of the two cases obtained based on the tem-
perature profile from the holographic measurement. An empirical
correlation of Nusselt number and Rayleigh number based on all
of the cases of holographic measurements in the present study can
be obtained as

NuL = 5.35 � 10−4RaL
0.823,

which is valid for 2.81�104�RaL�6.62�104 and the character-
istic length is defined as L��surface area/perimeter�. All of the
properties are evaluated at the film temperature, �Ts+Ta� /2. An R2

value for the correlation is 0.971. The comparison of the experi-
ment data with the correlation is shown in Fig. 6�b�.
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The present investigation deals with the numerical computation of
laminar natural convection in a gamma of right-angled triangular
cavities filled with air. The vertical walls are heated and the in-
clined walls are cooled while the upper connecting walls are in-
sulated from the ambient air. The defining apex angle � is located
at the lower vertex formed between the vertical and inclined
walls. This unique kind of cavity may find application in the min-
iaturization of electronic packaging severely constrained by space
and/or weight. The finite volume method is used to perform the
computational analysis encompassing a collection of apex angles
� compressed in the interval that extends from 5° to 63°. The
height-based Rayleigh number, being unaffected by the apex angle
�, ranges from a low 103 to a high 106. Numerical results are
reported for the velocity field, the temperature field and the mean
convective coefficient along the heated vertical wall. Overall, the
matching between the numerically predicted temperatures and the
experimental measurements of air at different elevations inside a
slim cavity is of ordinary quality. For purposes of engineering
design, a NuH correlation equation was constructed and also a
figure-of-merit ratio between the NuH and the cross sectional area
A of the cavity was proposed. �DOI: 10.1115/1.2033903�

Introduction
When a gas or a single-phase liquid is trapped inside a station-

ary closed cavity, natural convective motion of the fluid is induced
and sustained when a temperature difference is applied at two or
more thermally active walls. This scenario represents an important
subclass of buoyancy-induced flows arising in engineering, geo-
physics, environmental sciences, etc.

There is a wealth of publications dealing with the theory, nu-
merical computation and experimentation of natural convection
across two-dimensional stationary cavities of square, rectangular
and annular cross sections as disclosed in the chapters written by
Raithby and Hollands �1� and Jaluria �2� in specialized hand-
books. However, certain cavities occurring in modern engineering
applications often have shapes differing from the conventional
configurations cited above.

The present paper addresses laminar natural convection in
right-angled triangular cavities filled with air. These cavities are

heated at the vertical wall and cooled at the inclined wall, whereas
the upper horizontal wall is insulated from the surroundings. The
motivation for undertaking this investigation gyrates around the
experimental work of Oktay �3�, who studied the beneficial at-
tributes of boiling heat transfer for the efficacious cooling of an
array of microelectronic LSI devices attached to a vertical wall
and encapsulated inside an upright triangular cavity. Surprisingly,
a literature survey on natural convection in cavities reveals no
publications so far on this kind of right-angled triangular cavity
and, consequently, the fluid physics of the unique assembly is not
understood. As stated by Simons et al. �4� and Bar-Cohen �5�, a
prominent application of this particular cavity arises in the minia-
turization of electronic packaging subjected to space and/or
weight constraints. Despite the fact that the literature is scarce in
the area of natural convection in vertical-placed right-angled tri-
angular cavities, it is abundant in the area of horizontal-placed
right-angled triangular cavities. Representative articles are those
of Akinsete and Coleman �6�, Poulikakos and Bejan �7�, Karyakin
et al. �8�, Salmun �9�, Asan and Namli �10�, and Haese and Teub-
ner �11�.

Relying on the finite volume method, numerical predictions of
the velocity and temperature fields induced by buoyant air in
vertical-placed right-angled triangular cavities owing to various
apex angles under the influence of low, moderate and large Ray-
leigh numbers are carried out in this paper. To validate the nu-
merical predictions, experimental data were gathered for local air
temperatures and mean convective coefficients from the publica-
tions by Elicer-Cortés et al. �12,13�.

The body of the paper is divided into four sections. The first
section describes the physical system and the mathematical for-
mulation. The implementation of the finite volume method is ex-
plained in the second section. The third section contains the
numerical-determined velocity and temperature fields as well as
the total heat transfer rates through the heated vertical wall. Fi-
nally, the comparison between the numerical predictions and some
experimental measurements available for air are included in the
fourth section. In addition, this section contains a correlation
equation needful for efficacious cavity design.

Physical System and Mathematical Formulation
Figure 1 is a sketch of the physical system that consists of

compressible air inside a vertical-placed right-angled triangular
cavity. A hot temperature is prescribed at the vertical wall, a cold
temperature is prescribed at the inclined wall and the connecting
top wall is covered with insulation. The variable apex angle � is
assigned at the bottom vertex, the intersection formed between the
heated vertical and the cooled inclined walls. The gravitational
acceleration acts parallel to the hot vertical wall. The dimension
perpendicular to the plane of the diagram is assumed to be long,
so that the confined air is conceived as two dimensional. For the
sake of generality, the air is assumed to be a non-Boussinesqian
fluid, so that the thermophysical properties changing with tem-
perature are incorporated in the analysis to mimic the experimen-
tal observations. Accordingly, the mathematical formulation is de-
scribed by the system of conservation equations

Mass: ��u�x + ��v�y = 0 �1�

Horizontal momentum: ��uu�x + ��vu�y = − px + ��ux�x + ��uy�y

�2�

Vertical momentum: ��uv�x + ��vv�y = − py + ��vx�x + ��vy�y

+ g�� − �r� �3�

Energy: ��cpuT�x + ��cpvT�y = �kTx�x + �kTy�y �4�

Contributed by the Heat Transfer Division of ASME for publication in the JOUR-

NAL OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division April 12,
2004; revision received May 3, 2005. Review conducted by: B. Farouk.

Journal of Heat Transfer OCTOBER 2005, Vol. 127 / 1181Copyright © 2005 by ASME

Downloaded 06 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Ideal gas equation of state: p = �RT �5�

The reference density �r in Eq. �3� is evaluated at a reference
temperature Tr= �TH+TC� /2.

The velocity boundary conditions rest on the assumptions that
�a� the walls are solid, rigid and impermeable and �b� the trapped
air does not slip at the walls. The thermal boundary conditions
implicate prescribed temperatures at both the heated vertical wall
and cooled inclined wall. Besides, a zero temperature gradient is
assigned at the top horizontal wall.

Eqs. �1�–�5�, subject to the set of boundary conditions, are dis-
cretized with the finite volume method in order to determine the
velocity and temperature fields of the air. Owing to the asymmetry
of the physical domain shown in Fig. 1, the computational and
physical domains are coincident. Different apex angles � con-
tained in the interval 5° ���63° coupled with Rayleigh num-
bers RaH ranging from 103 to 106 are chosen.

The local wall heat flux along the hot vertical wall qw�y� is
found by applying Fourier’s law to the air temperature field. This
step leads to the mean wall heat flux along the hot vertical wall

qw =
1

H�0

H

qw�y�dy �6�

Subsequently, the mean convective coefficient h̄ and the mean
Nusselt number NuH are obtained from the relations

NuH =
Hh̄

k
=

Hqw

k�TH − TC�
�7�

Here, the air thermal conductivity k is evaluated at the reference
temperature Tr= �TH+TC� /2.

Computational Procedure
The numerical computations are performed with the finite vol-

ume code FLUENT 6.1. The computational domain was created
and meshed using the grid generation software Gambit 2.0®. Care
was taken to increase the element density in vulnerable areas
where high velocity and temperature gradients would occur, such
as near the solid walls. Based on numerical experiments, various
grid sizes having 30,000 triangular elements up to 90,000 were
tried. For the largest �=63°, the optimal computational mesh was
constructed with 76,000 triangular elements carrying an error
within 1%. Upon reducing � to 45°, 30°, 15°, 10°, and 5°, the
number of triangular elements was diminished gradually to
65,000, 58,000, 52,000, 47,000, and 43,000, respectively. These

grid layouts rendered reliable results for the velocity and tempera-
ture fields u�x ,y�, v�x ,y� and T�x ,y� for all combinations of � and
RaH selected. In Eqs. �1�–�4�, the discretization of the convective
term is accomplished by the second order accurate scheme
QUICK, while the pressure-velocity coupling is handled with the
SIMPLE scheme. Also, global convergence was guaranteed by
controlling the residuals of Eqs. �1�–�4�. After good convergence
of the velocity and temperature fields was attained, we proceeded
to calculate the streamlines and isotherms as well as the mean
wall heat flux at the vertical heated wall qw, the ultimate quantity
of interest.

Numerical Results and Comparison Against Experi-
mental Data

Fluid motion was set up in the triangular cavities by heating the
vertical wall to a uniform temperature TH while simultaneously
cooling the inclined wall at a uniform temperature TC. The upper
connecting horizontal wall was insulated.

When examining Fig. 2 for a low RaH=103, we observed con-
tour plots of temperatures and stream functions for the three typi-
cal cavities owing apex angles �=63°, 45° and 15°. From the trio
of stream function plots, it can be seen that all three configurations
exhibit a single rotating vortex. The direction of the vortex rota-
tion can be determined by finding the sign of the gradient for the
stream function in the x direction and remembering that the ve-
locity in the y direction is opposite in sign to the stream function
gradient. For the three cavities, the stream function gradient is
negative from the hot wall to the center and positive from the
center toward the cold wall. Therefore, the vertical velocity is
positive along the hot vertical wall and negative along the cold
inclined wall and the vortex is rotating in a clockwise direction.
The effect on temperature of the clockwise vortex can be visual-
ized in the isotherm plots. The vortex moves the warm fluid from
the left wall along the top of the geometry and results in higher
temperatures at the top half of each cavity. The overall orientation
of the temperature isotherms is vertical signaling a heat transfer
process dominated by conduction. The strength of the vortex ro-
tation can be determined by calculating the magnitude of the
stream function gradient. The 45° triangle displays the largest
stream function gradient, while the 15° triangle displays the small-
est. Therefore, we expected the vortex strength and velocities to
be highest in the 45° triangle and lowest in the 15° triangle. The
local Nusselt number Nuy attains the largest value for the 15°
triangle, an intermediate value for the 45° triangle and the small-
est value for the 63° cavity. Essentially, the peculiar behavior of
Nuy must then be attributed to increased conductive heat transfer
due to the small separation between the hot and cold walls and not
to the increase in vortex strength.

Figure 3 displays the temperature and stream function contour
plots for the high RaH=106. When comparing the stream function
plots from Fig. 2 and Fig. 3, one noticed that the vortex for the
63° and 45° triangles has moved down toward the bottom corner
when RaH is expanded three orders of magnitude. On the contrary,
the location of the vortex in the 15° triangle literally is not af-
fected. Calculating the sign of the stream function gradient
showed that the direction of vortex rotation is the same as in Fig.
2. In addition to the new vortex locations, the strength of the
vortex is also enlarged as seen by the magnitude of the stream
function gradient. The effect of this vortex strength increment can
be seen in the temperature contours where the isotherms are now
arranged horizontally instead of vertically. This difference in the
isotherm orientation highlights the importance of convection over
conduction at this RaH number. Also, Fig. 3 revealed that the
strongest vortex occurs for the 63° triangle, which is in sharp
contrast to Fig. 2 where the 63° triangle had the intermediate
rotation strength. As it happened in Fig. 2, the local Nusselt num-
ber Nuy is the highest for the 15° triangle and the lowest for the
63° triangle. Furthermore, the percent amplification in Nuy be-

Fig. 1 Sketch of the upright right-angled triangular cavity
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tween Fig. 2 and Fig. 3 is connected to the 63° triangle. This large
percent accretion is due to the fact that conduction is less impor-
tant in the overall heat transfer process for this particular apex
angle because of the relatively large separation between the hot
and cold walls especially near the lower vertex. Consequently, any
augmentation in convective heat transfer will have a greater im-
pact on the overall heat transfer.

Experimental data for the local air temperatures T�x ,y� and

mean convective coefficients h̄ in slender upright triangular cavi-
ties were gathered from the publication by Elicer-Cortés and Kim-
Son �13� to validate the numerical predictions. In their work, the
vertical wall was heated by means of a stabilized electric power
supply while the inclined wall was cooled with a precision ther-
mostat containing water. In the experimental setup, three shapes
related to slender upright triangular cavities holding apex angles
of 5°, 10°, 15° were considered. The hot wall temperatures were
set at TH=40°, 60°, 80°, and 100°C. For the 15° triangle, Fig. 4

illustrates a reasonable parity between the numerically estimated
and the measured air temperature profiles taken at three relative
heights y /H=0.1, 0.58 and 0. 99. The lowermost curve for y /H
=0.1 reveals that the numerical predictions overlap perfectly with
the experimental measurements. It may also be inferred that in
this lower corner region, the air is basically motionless and the
transfer of heat occurs by conduction. The numerical temperatures
slightly overpredicted the experimental observations at the other
two heights y /H=0.58 and 0.99. The largest discrepancy occurs
for the uppermost curve representative of y /H=0.99. This may be
attributed to the fact that this location, being very close to the top
horizontal insulated wall, experiences heat losses to the ambient
air through the insulation �13�. Experimental error in the measure-
ments is another possibility. Invariably, the same patterns pre-
vailed in Fig. 5 for a more slender cavity having a smaller apex
angle of 10°. Here, the measurements were taken at relative
heights of y /H=0.1, 0.5 and 0.98. A feature showing up in the

Fig. 2 Plots of stream functions, isotherms and local Nusselt numbers Nuy for three apex angles �=63°, 45° and 15° sharing
a small RaH=103
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figure indicated that the agreement between the numerical and
experimental air temperatures at the three locations is acceptable.
Overall, the matching between the numerical predictions of local
temperatures and the experimental measurements of �13� tends to
improve for the smaller upright cavity. Table 1 summarizes the
comparison between the computed NuH and the NuH measured by
Elicer-Cortés et al. �12� for the three apex angles �=5°, 10° and
15°. The level of matching is considered reasonable because the
relative errors for NuH are located within a narrow band of 11%.
Thereby, this kind of concordance lends credibility to the numeri-
cal computations to be used in computer-aided designs of upright
triangular cavities.

The height-based mean Nusselt number NuH depends on two
independent quantities, namely the apex angle � �a geometric
quantity� and the Rayleigh number RaH �a thermo-geometric
quantity�. Correspondingly, the variability of NuH gives rise to a
double-valued function NuH= f�� ,RaH� that generates a NuH sur-
face. For purposes of visualization, it may be convenient to de-

Fig. 3 Plots of stream functions, isotherms and local Nusselt numbers Nuy for three different apex angles �=63°, 45° and 15°
sharing a large RaH=106

Fig. 4 Comparison between the numerical and experimental
temperature profiles at three different elevations for a 15° trian-
gular cavity
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couple the NuH surface into an equivalent family of NuH curves
changing with RaH while retaining � as a parameter. This is
shown in Fig. 6. For comparison purposes, the lowermost NuH
curve representative of the 63° cavity constitutes the natural base
line case in this study. When the apex angle is reduced to �
=45° the NuH− curve moves up slightly but remains almost paral-
lel to the NuH curve related to the 63° cavity as long as RaH

�105. However, above RaH=105, the separation between both
curves shrinks and the two curves eventually coincide at RaH
=106. Quantitatively, the NuH deviations, �NuH, amount to 1.5
units for the low RaH=103 and to 1 unit for a high RaH=105.
These two numbers are referred to the values of NuH correlative to
the 63° cavity. When the 45° cavity is cut diagonally in three
equal apex angles, the leftmost wedge gives rise to a slim 15°
cavity. For this specific geometry, the increments in NuH show
remarkable gains. For instance, when RaH=103, NuH raises from
about 4.5 to 13.5, a threefold factor. Since the NuH curve for 15°
flattens out in the vicinity of RaH=106, it turns out that for RaH
=106, the NuH enlargement goes from 10.5 to 15.5—a modest
factor of 1.5. For small and large RaH, the asymptotic slopes of
the NuH curves increased with increments in the apex angle �; the
increments are milder for low RaH. Moreover, it is worth mention-
ing that NuH for the 15° cavity is kept constant at a value of 13.5
for RaH up to 5�105. This number constitutes the critical Ray-
leigh number RaH,c, which is linked to the onset of natural con-
vection currents. Conversely, this aspect is also a reassurance that
the transfer of heat occurs by conduction whenever RaH�5
�105.

Second, Fig. 7 portrays the other view of the NuH surfaces,
namely a family of NuH curves changing with � being parameter-
ized by RaH. All NuH curves exhibited monotonic decreasing be-
havior. As expected, for a fixed �, NuH gets energized with incre-
ments of RaH. The separation between two consecutive NuH
curves increased gradually as RaH becomes intensified and � gets
larger. Thus, the largest separation occurs between RaH=103 and
106 at �=63°.

A non-linear multiple regression analysis was carried out with
the collection of numerically data generated. Its outcome pro-
duced the predictive correlation equation

NuH = 26.37 + 1.43 � 10−5RaH − 68.86� − 1.28 � 10−11RaH
2

+ 74.13�2 − 27.82�3 + 5.44 � 10−6�RaH �8�

where � is expressed in radians. The nearly perfect R-square value
of 99.4% means that 99.4% of the variability in NuH caused by
changes in � and RaH can be explained by the six predictor vari-
ables in Eq. �8�. The range of validity of Eq. �8� is 5° ���63°
and 103�RaH�106. The maximum error between the numerical
and predicted NuH is less than 12%.

The two primordial goals in packaging engineering using cavi-
ties for natural convection cooling may be enunciated as follows:
�1� to transfer large amounts of heat across the cavities and �2� the
placement of the cavities in reduced spaces. To fulfill these two

Fig. 7 Variation of the mean Nusselt number NuH with the apex
angle � parameterized by the Rayleigh number RaH

Fig. 5 Comparison between the numerical and experimental
dimensionless temperature profiles at three different eleva-
tions for a 10° triangular cavity

Table 1 Comparison between the numerical and experimental
mean Nusselt numbers NuH for different values of � and TH

Fig. 6 Variation of the mean Nusselt number NuH with the Ray-
leigh number RaH parameterized by the apex angle �
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goals concurrently, we proposed a figure of merit forming a ratio
between the NuH and the cross sectional area A of the cavity.
Table 2 lists the corresponding numbers for all combinations of
apex angles � and Rayleigh numbers RaH utilized in this work.
First, for a low RaH=103, the NuH /A ratio jumps from 2.91 to
8.45 between the 63° cavity and a 45° cavity; this action translates
into a factor of 3. Moreover, the NuH /A ratio jumps from 2.91 to
49.86 between the 63° cavity and a 15° cavity, a factor of 17.
When RaH is enlarged to 106, the NuH /A ratio jumps from 10.55
to 20.49 between the 63° cavity and the 45° cavity, a factor of
almost 2. In addition, the NuH /A ratio leaps from 10.55 to 58.45
between the 63° cavity and a 15° cavity, a factor of 5.5. Given this
thermo-geometric background, it may be concluded that within
the spectrum of apex angles and RaH numbers tested, the heat
transfer enhancement gets accentuated when both the apex angle
� and the height-based Rayleigh number RaH diminishes. In other
words, this statement is synonymous with conduction-dominant
cavities. This condensed information channeled through NuH /A
may be useful to engineers engaged in thermal design optimiza-
tion.
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Nomenclature
a � thermal diffusivity
A � cross sectional area of cavity
g � acceleration of gravity

h̄ � mean convective coefficient
H � height of vertical wall
L � length of horizontal wall
k � thermal conductivity

Nuy � local Nusselt number, hy /k

NuH � mean Nusselt number, h̄H /k
p � pressure

qw � local wall heat flux
qw � mean wall heat flux
R � gas constant

RaH � Rayleigh number, g	�TH−TC�H3 /av
T � temperature

u ,v � velocities in the x- and y- directions
x ,y � horizontal and vertical coordinates

Greek Letters
� � apex angle
	 � volumetric thermal expansion coefficient
v � kinematic viscosity

 � dimensionless temperature, �T−TC� / �TH−TC�
� � density

Subscripts
x � derivative with respect to x
y � derivative with respect to y
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